def main(): def evaluate(): model.eval() num_correct = 0 num_total = 0 for inputs, labels in tqdm(test_dl, total=len(test_dl)): inputs = inputs.to(device) labels = torch.tensor([x % 10 for x in labels.tolist()]) labels = labels.to(device) scores = model(inputs, None) num_correct += (scores.max(1)[1] == labels).float().sum().item() num_total += scores.size(0) logging.info(f'{num_correct / num_total}') ws.increment_model(model, num_correct / num_total / 100) apb = ArgumentParserBuilder() apb.add_options(opt('--model', type=str, choices=RegisteredModel.registered_names(), default='las'), opt('--workspace', type=str, default=str(Path('workspaces') / 'default')), opt('--load-weights', action='store_true')) args = apb.parser.parse_args() ws = Workspace(Path(args.workspace)) writer = ws.summary_writer set_seed(SETTINGS.training.seed) transform = transforms.Compose([transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset1 = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) testset1 = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=test_transform) trainset2 = torchvision.datasets.CIFAR100(root='./data', train=True, download=True, transform=transform) testset2 = torchvision.datasets.CIFAR100(root='./data', train=False, download=True, transform=test_transform) transform = transforms.Compose([transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)), expand]) test_transform = transforms.Compose([transforms.Pad((2, 2)), transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)), expand]) trainset3 = torchvision.datasets.FashionMNIST(root='./data', train=True, download=True, transform=transform) testset3 = torchvision.datasets.FashionMNIST(root='./data', train=False, download=True, transform=test_transform) train_dl = tud.DataLoader(tud.ConcatDataset([trainset1, trainset2, trainset3]), batch_size=SETTINGS.training.batch_size, shuffle=True) test_dl = tud.DataLoader(tud.ConcatDataset([testset1, testset2, testset3]), batch_size=SETTINGS.training.batch_size, shuffle=False) device = torch.device(SETTINGS.training.device) model = RegisteredModel.find_registered_class(args.model)().to(device) params = list(filter(lambda x: x.requires_grad, model.parameters())) optimizer = AdamW(params, SETTINGS.training.learning_rate, weight_decay=SETTINGS.training.weight_decay) logging.info(f'{sum(p.numel() for p in params)} parameters') criterion = nn.CrossEntropyLoss() ws.write_args(args) ws.write_settings(SETTINGS) writer.add_scalar('Meta/Parameters', sum(p.numel() for p in params)) for epoch_idx in trange(SETTINGS.training.num_epochs, position=0, leave=True): model.train() pbar = tqdm(train_dl, total=len(train_dl), position=1, desc='Training', leave=True) for inputs, labels in pbar: optimizer.zero_grad() model.zero_grad() labels = torch.tensor([x % 10 for x in labels.tolist()]) inputs = inputs.to(device) labels = labels.to(device) scores = model(inputs, None) loss = criterion(scores, labels) loss.backward() optimizer.step() pbar.set_postfix(dict(loss=f'{loss.item():.3}')) writer.add_scalar('Training/Loss', loss.item(), epoch_idx) for group in optimizer.param_groups: group['lr'] *= 0.9 evaluate()
def main(): def evaluate_engine(dataset: WakeWordDataset, prefix: str, save: bool = False, positive_set: bool = False, write_errors: bool = True, mixer: DatasetMixer = None): std_transform.eval() if use_frame: engine = FrameInferenceEngine(int(SETTINGS.training.max_window_size_seconds * 1000), int(SETTINGS.training.eval_stride_size_seconds * 1000), SETTINGS.audio.sample_rate, model, zmuv_transform, negative_label=ctx.negative_label, coloring=ctx.coloring) else: engine = SequenceInferenceEngine(SETTINGS.audio.sample_rate, model, zmuv_transform, negative_label=ctx.negative_label, coloring=ctx.coloring, blank_idx=ctx.blank_label) model.eval() conf_matrix = ConfusionMatrix() pbar = tqdm(dataset, desc=prefix) if write_errors: with (ws.path / 'errors.tsv').open('a') as f: print(prefix, file=f) for idx, ex in enumerate(pbar): if mixer is not None: ex, = mixer([ex]) audio_data = ex.audio_data.to(device) engine.reset() seq_present = engine.infer(audio_data) if seq_present != positive_set and write_errors: with (ws.path / 'errors.tsv').open('a') as f: f.write(f'{ex.metadata.transcription}\t{int(seq_present)}\t{int(positive_set)}\t{ex.metadata.path}\n') conf_matrix.increment(seq_present, positive_set) pbar.set_postfix(dict(mcc=f'{conf_matrix.mcc}', c=f'{conf_matrix}')) logging.info(f'{conf_matrix}') if save and not args.eval: writer.add_scalar(f'{prefix}/Metric/tp', conf_matrix.tp, epoch_idx) ws.increment_model(model, conf_matrix.tp) if args.eval: threshold = engine.threshold with (ws.path / (str(round(threshold, 2)) + '_results.csv') ).open('a') as f: f.write(f'{prefix},{threshold},{conf_matrix.tp},{conf_matrix.tn},{conf_matrix.fp},{conf_matrix.fn}\n') def do_evaluate(): evaluate_engine(ww_dev_pos_ds, 'Dev positive', positive_set=True) evaluate_engine(ww_dev_neg_ds, 'Dev negative', positive_set=False) if SETTINGS.training.use_noise_dataset: evaluate_engine(ww_dev_pos_ds, 'Dev noisy positive', positive_set=True, mixer=dev_mixer) evaluate_engine(ww_dev_neg_ds, 'Dev noisy negative', positive_set=False, mixer=dev_mixer) evaluate_engine(ww_test_pos_ds, 'Test positive', positive_set=True) evaluate_engine(ww_test_neg_ds, 'Test negative', positive_set=False) if SETTINGS.training.use_noise_dataset: evaluate_engine(ww_test_pos_ds, 'Test noisy positive', positive_set=True, mixer=test_mixer) evaluate_engine(ww_test_neg_ds, 'Test noisy negative', positive_set=False, mixer=test_mixer) apb = ArgumentParserBuilder() apb.add_options(opt('--model', type=str, choices=RegisteredModel.registered_names(), default='las'), opt('--workspace', type=str, default=str(Path('workspaces') / 'default')), opt('--load-weights', action='store_true'), opt('--load-last', action='store_true'), opt('--no-dev-per-epoch', action='store_false', dest='dev_per_epoch'), opt('--dataset-paths', '-i', type=str, nargs='+', default=[SETTINGS.dataset.dataset_path]), opt('--eval', action='store_true')) args = apb.parser.parse_args() use_frame = SETTINGS.training.objective == 'frame' ctx = InferenceContext(SETTINGS.training.vocab, token_type=SETTINGS.training.token_type, use_blank=not use_frame) if use_frame: batchifier = WakeWordFrameBatchifier(ctx.negative_label, window_size_ms=int(SETTINGS.training.max_window_size_seconds * 1000)) criterion = nn.CrossEntropyLoss() else: tokenizer = WakeWordTokenizer(ctx.vocab, ignore_oov=False) batchifier = AudioSequenceBatchifier(ctx.negative_label, tokenizer) criterion = nn.CTCLoss(ctx.blank_label) ws = Workspace(Path(args.workspace), delete_existing=not args.eval) writer = ws.summary_writer set_seed(SETTINGS.training.seed) loader = WakeWordDatasetLoader() ds_kwargs = dict(sr=SETTINGS.audio.sample_rate, mono=SETTINGS.audio.use_mono, frame_labeler=ctx.labeler) ww_train_ds, ww_dev_ds, ww_test_ds = WakeWordDataset(metadata_list=[], set_type=DatasetType.TRAINING, **ds_kwargs), \ WakeWordDataset(metadata_list=[], set_type=DatasetType.DEV, **ds_kwargs), \ WakeWordDataset(metadata_list=[], set_type=DatasetType.TEST, **ds_kwargs) for ds_path in args.dataset_paths: ds_path = Path(ds_path) train_ds, dev_ds, test_ds = loader.load_splits(ds_path, **ds_kwargs) ww_train_ds.extend(train_ds) ww_dev_ds.extend(dev_ds) ww_test_ds.extend(test_ds) print_stats(f'Wake word dataset', ww_train_ds, ww_dev_ds, ww_test_ds) ww_dev_pos_ds = ww_dev_ds.filter(lambda x: ctx.searcher.search(x.transcription), clone=True) ww_dev_neg_ds = ww_dev_ds.filter(lambda x: not ctx.searcher.search(x.transcription), clone=True) ww_test_pos_ds = ww_test_ds.filter(lambda x: ctx.searcher.search(x.transcription), clone=True) ww_test_neg_ds = ww_test_ds.filter(lambda x: not ctx.searcher.search(x.transcription), clone=True) print_stats(f'Dev dataset', ww_dev_pos_ds, ww_dev_neg_ds) print_stats(f'Test dataset', ww_test_pos_ds, ww_test_neg_ds) device = torch.device(SETTINGS.training.device) std_transform = StandardAudioTransform().to(device).eval() zmuv_transform = ZmuvTransform().to(device) train_comp = (NoiseTransform().train(), batchifier) if SETTINGS.training.use_noise_dataset: noise_ds = RecursiveNoiseDatasetLoader().load(Path(SETTINGS.raw_dataset.noise_dataset_path), sr=SETTINGS.audio.sample_rate, mono=SETTINGS.audio.use_mono) logging.info(f'Loaded {len(noise_ds.metadata_list)} noise files.') noise_ds_train, noise_ds_dev = noise_ds.split(Sha256Splitter(80)) noise_ds_dev, noise_ds_test = noise_ds_dev.split(Sha256Splitter(50)) train_comp = (DatasetMixer(noise_ds_train).train(),) + train_comp dev_mixer = DatasetMixer(noise_ds_dev, seed=0, do_replace=False) test_mixer = DatasetMixer(noise_ds_test, seed=0, do_replace=False) train_comp = compose(*train_comp) prep_dl = StandardAudioDataLoaderBuilder(ww_train_ds, collate_fn=batchify).build(1) prep_dl.shuffle = True train_dl = StandardAudioDataLoaderBuilder(ww_train_ds, collate_fn=train_comp).build(SETTINGS.training.batch_size) model = RegisteredModel.find_registered_class(args.model)(ctx.num_labels).to(device).streaming() if SETTINGS.training.convert_static: model = ConvertedStaticModel(model, 40, 10) params = list(filter(lambda x: x.requires_grad, model.parameters())) optimizer = AdamW(params, SETTINGS.training.learning_rate, weight_decay=SETTINGS.training.weight_decay) logging.info(f'{sum(p.numel() for p in params)} parameters') if (ws.path / 'zmuv.pt.bin').exists(): zmuv_transform.load_state_dict(torch.load(str(ws.path / 'zmuv.pt.bin'))) else: for idx, batch in enumerate(tqdm(prep_dl, desc='Constructing ZMUV')): batch.to(device) zmuv_transform.update(std_transform(batch.audio_data)) if idx == 2000: # TODO: quick debugging, remove later break logging.info(dict(zmuv_mean=zmuv_transform.mean, zmuv_std=zmuv_transform.std)) torch.save(zmuv_transform.state_dict(), str(ws.path / 'zmuv.pt.bin')) if args.load_weights: ws.load_model(model, best=not args.load_last) if args.eval: ws.load_model(model, best=not args.load_last) do_evaluate() return ws.write_args(args) ws.write_settings(SETTINGS) writer.add_scalar('Meta/Parameters', sum(p.numel() for p in params)) for epoch_idx in trange(SETTINGS.training.num_epochs, position=0, leave=True): model.train() std_transform.train() model.streaming_state = None pbar = tqdm(train_dl, total=len(train_dl), position=1, desc='Training', leave=True) total_loss = torch.Tensor([0.0]).to(device) for batch in pbar: batch.to(device) if use_frame: scores = model(zmuv_transform(std_transform(batch.audio_data)), std_transform.compute_lengths(batch.lengths)) loss = criterion(scores, batch.labels) else: lengths = std_transform.compute_lengths(batch.audio_lengths) scores = model(zmuv_transform(std_transform(batch.audio_data)), lengths) scores = F.log_softmax(scores, -1) # [num_frames x batch_size x num_labels] lengths = torch.tensor([model.compute_length(x.item()) for x in lengths]).to(device) loss = criterion(scores, batch.labels, lengths, batch.label_lengths) optimizer.zero_grad() model.zero_grad() loss.backward() optimizer.step() pbar.set_postfix(dict(loss=f'{loss.item():.3}')) with torch.no_grad(): total_loss += loss for group in optimizer.param_groups: group['lr'] *= SETTINGS.training.lr_decay mean = total_loss / len(train_dl) writer.add_scalar('Training/Loss', mean.item(), epoch_idx) writer.add_scalar('Training/LearningRate', group['lr'], epoch_idx) if args.dev_per_epoch: evaluate_engine(ww_dev_pos_ds, 'Dev positive', positive_set=True, save=True, write_errors=False) do_evaluate()
def main(): def evaluate_accuracy(data_loader, prefix: str, save: bool = False): std_transform.eval() model.eval() pbar = tqdm(data_loader, desc=prefix, leave=True, total=len(data_loader)) num_corr = 0 num_tot = 0 counter = Counter() for idx, batch in enumerate(pbar): batch = batch.to(device) scores = model(zmuv_transform(std_transform(batch.audio_data)), std_transform.compute_lengths(batch.lengths)) num_tot += scores.size(0) labels = batch.labels.to(device) counter.update(labels.tolist()) num_corr += (scores.max(1)[1] == labels).float().sum().item() acc = num_corr / num_tot pbar.set_postfix(accuracy=f'{acc:.4}') if save and not args.eval: writer.add_scalar(f'{prefix}/Metric/acc', acc, epoch_idx) ws.increment_model(model, acc / 10) elif args.eval: tqdm.write(str(counter)) tqdm.write(str(acc)) return num_corr / num_tot apb = ArgumentParserBuilder() apb.add_options( opt('--model', type=str, choices=RegisteredModel.registered_names(), default='las'), opt('--workspace', type=str, default=str(Path('workspaces') / 'default')), opt('--load-weights', action='store_true'), opt('--eval', action='store_true')) args = apb.parser.parse_args() ws = Workspace(Path(args.workspace), delete_existing=not args.eval) writer = ws.summary_writer set_seed(SETTINGS.training.seed) loader = GoogleSpeechCommandsDatasetLoader(SETTINGS.training.vocab) sr = SETTINGS.audio.sample_rate ds_kwargs = dict(sr=sr, mono=SETTINGS.audio.use_mono) train_ds, dev_ds, test_ds = loader.load_splits( Path(SETTINGS.dataset.dataset_path), **ds_kwargs) sr = SETTINGS.audio.sample_rate device = torch.device(SETTINGS.training.device) std_transform = StandardAudioTransform().to(device).eval() zmuv_transform = ZmuvTransform().to(device) batchifier = partial(batchify, label_provider=lambda x: x.label) truncater = partial(truncate_length, length=int(SETTINGS.training.max_window_size_seconds * sr)) train_comp = compose(truncater, TimeshiftTransform().train(), NoiseTransform().train(), batchifier) prep_dl = StandardAudioDataLoaderBuilder(train_ds, collate_fn=batchifier).build(1) prep_dl.shuffle = True train_dl = StandardAudioDataLoaderBuilder( train_ds, collate_fn=train_comp).build(SETTINGS.training.batch_size) dev_dl = StandardAudioDataLoaderBuilder( dev_ds, collate_fn=compose(truncater, batchifier)).build(SETTINGS.training.batch_size) test_dl = StandardAudioDataLoaderBuilder( test_ds, collate_fn=compose(truncater, batchifier)).build(SETTINGS.training.batch_size) model = RegisteredModel.find_registered_class(args.model)(30).to(device) params = list(filter(lambda x: x.requires_grad, model.parameters())) optimizer = AdamW(params, SETTINGS.training.learning_rate, weight_decay=SETTINGS.training.weight_decay) logging.info(f'{sum(p.numel() for p in params)} parameters') criterion = nn.CrossEntropyLoss() if (ws.path / 'zmuv.pt.bin').exists(): zmuv_transform.load_state_dict(torch.load(str(ws.path / 'zmuv.pt.bin'))) else: for idx, batch in enumerate(tqdm(prep_dl, desc='Constructing ZMUV')): batch.to(device) zmuv_transform.update(std_transform(batch.audio_data)) if idx == 2000: # TODO: quick debugging, remove later break logging.info( dict(zmuv_mean=zmuv_transform.mean, zmuv_std=zmuv_transform.std)) torch.save(zmuv_transform.state_dict(), str(ws.path / 'zmuv.pt.bin')) if args.load_weights: ws.load_model(model, best=True) if args.eval: ws.load_model(model, best=True) evaluate_accuracy(dev_dl, 'Dev') evaluate_accuracy(test_dl, 'Test') return ws.write_args(args) ws.write_settings(SETTINGS) writer.add_scalar('Meta/Parameters', sum(p.numel() for p in params)) dev_acc = 0 for epoch_idx in trange(SETTINGS.training.num_epochs, position=0, leave=True): model.train() std_transform.train() pbar = tqdm(train_dl, total=len(train_dl), position=1, desc='Training', leave=True) for batch in pbar: batch.to(device) audio_data = zmuv_transform(std_transform(batch.audio_data)) scores = model(audio_data, std_transform.compute_lengths(batch.lengths)) optimizer.zero_grad() model.zero_grad() labels = batch.labels.to(device) loss = criterion(scores, labels) loss.backward() optimizer.step() pbar.set_postfix(dict(loss=f'{loss.item():.3}')) writer.add_scalar('Training/Loss', loss.item(), epoch_idx) for group in optimizer.param_groups: group['lr'] *= SETTINGS.training.lr_decay dev_acc = evaluate_accuracy(dev_dl, 'Dev', save=True) test_acc = evaluate_accuracy(test_dl, 'Test') print("model: ", args.model) print("dev_acc: ", dev_acc) print("test_acc: ", test_acc)