Exemple #1
0
    def test_series_median_parallel1(self):
        # create `kde.parquet` file
        ParquetGenerator.gen_kde_pq()

        def test_impl():
            df = pq.read_table('kde.parquet').to_pandas()
            S = df.points
            return S.median()
        hpat_func = hpat.jit(test_impl)

        self.assertEqual(hpat_func(), test_impl())
Exemple #2
0
    def test_series_sort_values_parallel1(self):
        # create `kde.parquet` file
        ParquetGenerator.gen_kde_pq()

        def test_impl():
            df = pq.read_table('kde.parquet').to_pandas()
            S = df.points
            return S.sort_values()
        hpat_func = hpat.jit(test_impl)

        np.testing.assert_array_equal(hpat_func(), test_impl())
Exemple #3
0
    def test_string_NA_box(self):
        # create `example.parquet` file
        ParquetGenerator.gen_pq_test()

        def test_impl():
            df = pq.read_table('example.parquet').to_pandas()
            return df.five
        hpat_func = hpat.jit(test_impl)

        # XXX just checking isna() since Pandas uses None in this case
        # instead of nan for some reason
        np.testing.assert_array_equal(hpat_func().isna(), test_impl().isna())
Exemple #4
0
    def test_sort_parallel_single_col(self):
        # create `kde.parquet` file
        ParquetGenerator.gen_kde_pq()

        # TODO: better parallel sort test
        def test_impl():
            df = pd.read_parquet('kde.parquet')
            df.sort_values('points', inplace=True)
            res = df.points.values
            return res

        hpat_func = hpat.jit(locals={'res:return': 'distributed'})(test_impl)

        save_min_samples = hpat.hiframes.sort.MIN_SAMPLES
        try:
            hpat.hiframes.sort.MIN_SAMPLES = 10
            res = hpat_func()
            self.assertTrue((np.diff(res) >= 0).all())
        finally:
            # restore global val
            hpat.hiframes.sort.MIN_SAMPLES = save_min_samples