saveto='weights/lstm_exeqrep.npz', arch_output_fn='logistic') # RUN HPM else: import hpm_0102 for i in range(1, n_datasets + 1): filename = '../data/exeqrep/exeqrep_per_student_' + str(i) te[i - 1], tll[i - 1], tauc[i - 1] = hpm_0102.train_model( encoder='hpm', show_weights=False, arch_hpm_gated=True, arch_remap_input=True, arch_hpm_recurrent=True, arch_hpm_prior_exp=False, #arch_hpm_gamma_scaled_mu=True, timescales=2.0**numpy.arange(-11, 7), valid_portion=3.0 / (32.0 - 4.0), valid_freq=5, maxlen=50000, patience=150, n_hid=60, saveto='weights/hpm_0102_exeqrep.npz', data_file=filename, arch_output_fn='logistic') elif (0): import hpm_030517 for i in range(1, n_datasets + 1): filename = '../data/exeqrep/exeqrep_per_student_' + str(i) te[i - 1], tll[i - 1], tauc[i - 1] = hpm_030517.train_model( encoder='hpm', show_weights=False,
import numpy filename = '../data/synthetic_hp_extrapolation/hp_10streams' # RUN LSTM WITH ADDITIONAL INPUTS if 1: import hpm_0102 tr, va, te = hpm_0102.train_model(encoder='lstm', arch_lstm_include_delta_t=True, valid_portion=.15, valid_freq=1, maxlen=1000, patience=25, n_hid=20, data_file=filename, saveto='weights/lstm_hp_10streams.npz', arch_output_fn='softmax') print(1 - te) # RUN HPM if 0: import hpm_0102 tr, va, te = hpm_0102.train_model( encoder='hpm', show_weights=False, arch_hpm_gated=True, # DEBUG *********** arch_input_map_constraint='none', arch_hpm_recurrent=True, arch_hpm_prior_exp=False, arch_hpm_alpha_constraint='strong', # CHEAT! timescales=2.0**numpy.arange(0, 13),
valid_freq=1, maxlen=1000, patience=20, n_hid=20, data_file=filename, saveto='weights/hpm_synthetic_cluster.npz', arch_output_fn='logistic') if 0: import hpm_0102 print "RUNNING LSTM" tr, va, te = hpm_0102.train_model( encoder='lstm', arch_lstm_include_delta_t=True, valid_portion=.15, valid_freq=1, maxlen=1000, patience=20, n_hid=20, data_file=filename, saveto='weights/lstm_synthetic_cluster.npz', arch_output_fn='logistic') if 0: import gru_5_0 as gru print "RUNNING GRU WITH DELTA T" tr, va, te = gru.train_model(encoder='gru', arch_gru_include_delta_t=True, valid_portion=.15, valid_freq=1, maxlen=1000, patience=20, n_hid=20,
arch_output_fn='softmax') print(1-te) # RUN HPM if 0: import hpm_0102 tr, va, te = hpm_0102.train_model(encoder='hpm', show_weights=False, arch_hpm_gated=True, arch_input_map_constraint='none', # NOTE arch_hpm_alpha_constraint='none', # NOTE arch_hpm_recurrent=True, arch_hpm_prior_exp=False, timescales=2.0**numpy.arange(-7,7), # NOTE: arange(-7,7) = -7:6 #timescales=[1./60./60./24., 1./60./24., 1./24., 1., 30.], #timescales=10.0**numpy.arange(-4,3), valid_portion=.15, valid_freq=1, maxlen=1000, patience=25, n_hid=50, data_file=filename, saveto='weights/hpm_0102_reddit.npz', arch_output_fn='softmax') print(1-te) # RUN HPM if 0: import hpm_030517 tr, va, te = hpm_030517.train_model(encoder='hpm',
import numpy import hpm_0102 # RUN LSTM if 1: te, tll, tauc = hpm_0102.train_model( encoder='lstm', arch_lstm_include_delta_t=True, arch_lstm_include_input_gate=True, arch_lstm_include_forget_gate=True, arch_lstm_include_output_gate=True, valid_portion=.15, data_file='../data/synthetic_music/5streams', valid_freq=5, patience=100, n_hid=5, saveto='weights/lstm_music.npz', arch_output_fn='softmax') # RUN HPM if 0: te, tll, tauc = hpm_0102.train_model( encoder='hpm', valid_portion=.15, show_weights=False, arch_hpm_gated=True, arch_remap_input=True, arch_hpm_recurrent=True, #arch_hpm_gamma_scaled_mu=True, #arch_hpm_gamma_scaled_alpha=True, arch_hpm_prior_exp=False,
valid_freq=5, patience=100, n_hid=25, saveto='weights/lstm_msnbc.npz', arch_output_fn='softmax') # RUN HPM 0102 if 0: import hpm_0102 te, tll, tauc = hpm_0102.train_model(encoder='hpm', valid_portion=.15, show_weights=False, arch_hpm_gated=True, arch_remap_input=True, arch_hpm_recurrent=True, arch_hpm_prior_exp=False, timescales=2.0**numpy.arange(0, 7), data_file='../data/msnbc/msnbc', valid_freq=5, patience=100, n_hid=25, saveto='weights/hpm_msnbc.npz', arch_output_fn='softmax') # RUN HPM 031117 if 0: import hpm_031117 # version with mixture of time scales te, tll, tauc = hpm_031117.train_model( encoder='hpm', show_weights=False, arch_hpm_gated=True, arch_input_map_constraint='none',