logging.basicConfig(level=logging.INFO) from robo.fmin import entropy_search from hpolib.benchmarks.ml.svm_benchmark import SvmOnMnist, SvmOnVehicle, SvmOnCovertype from hpolib.benchmarks.ml.residual_networks import ResidualNeuralNetworkOnCIFAR10 from hpolib.benchmarks.ml.conv_net import ConvolutionalNeuralNetworkOnCIFAR10, ConvolutionalNeuralNetworkOnSVHN run_id = int(sys.argv[1]) dataset = sys.argv[2] seed = int(sys.argv[3]) rng = np.random.RandomState(seed) if dataset == "mnist": f = SvmOnMnist(rng=rng) num_iterations = 15 output_path = "./experiments/fabolas/results/svm_%s/entropy_search_%d" % ( dataset, run_id) elif dataset == "vehicle": f = SvmOnVehicle(rng=rng) num_iterations = 15 output_path = "./experiments/fabolas/results/svm_%s/entropy_search_%d" % ( dataset, run_id) elif dataset == "covertype": f = SvmOnCovertype(rng=rng) num_iterations = 15 output_path = "./experiments/fabolas/results/svm_%s/entropy_search_%d" % ( dataset, run_id) elif dataset == "cifar10": f = ConvolutionalNeuralNetworkOnCIFAR10(rng=rng)
from robo.solver.hyperband_datasets_size import HyperBand_DataSubsets from hpolib.benchmarks.ml.svm_benchmark import SvmOnMnist, SvmOnVehicle, SvmOnCovertype #from hpolib.benchmarks.ml.residual_networks import ResidualNeuralNetworkOnCIFAR10 from hpolib.benchmarks.ml.conv_net import ConvolutionalNeuralNetworkOnCIFAR10 #, ConvolutionalNeuralNetworkOnSVHN run_id = int(sys.argv[1]) dataset = sys.argv[2] seed = int(sys.argv[3]) rng = np.random.RandomState(seed) if dataset == "mnist": f = SvmOnMnist(rng=rng) output_path = "./experiments/fabolas/results/svm_%s/hyperband_%d" % (dataset, run_id) s_max = f.train.shape[0] s_min = 100 elif dataset == "vehicle": f = SvmOnVehicle(rng=rng) output_path = "./experiments/fabolas/results/svm_%s/hyperband_%d" % (dataset, run_id) s_max = f.train.shape[0] s_min = 100 elif dataset == "mnist_random": f = SvmOnMnist(rng=rng) output_path = "./experiments/fabolas/results/svm_%s/hyperband_%d" % (dataset, run_id) s_max = f.train.shape[0] s_min = s_max elif dataset == "vehicle_random": f = SvmOnVehicle(rng=rng)
logging.basicConfig(level=logging.INFO) from robo.solver.hyperband_datasets_size import HyperBand_DataSubsets from hpolib.benchmarks.ml.svm_benchmark import SvmOnMnist, SvmOnVehicle, SvmOnCovertype from hpolib.benchmarks.ml.residual_networks import ResidualNeuralNetworkOnCIFAR10 from hpolib.benchmarks.ml.conv_net import ConvolutionalNeuralNetworkOnCIFAR10, ConvolutionalNeuralNetworkOnSVHN run_id = int(sys.argv[1]) dataset = sys.argv[2] seed = int(sys.argv[3]) rng = np.random.RandomState(seed) if dataset == "mnist": f = SvmOnMnist(rng=rng) output_path = "./experiments/fabolas/results/svm_%s/hyperband_%d" % ( dataset, run_id) elif dataset == "vehicle": f = SvmOnVehicle(rng=rng) output_path = "./experiments/fabolas/results/svm_%s/hyperband_%d" % ( dataset, run_id) elif dataset == "covertype": f = SvmOnCovertype(rng=rng) output_path = "./experiments/fabolas/results/svm_%s/hyperband_%d" % ( dataset, run_id) elif dataset == "cifar10": f = ConvolutionalNeuralNetworkOnCIFAR10(rng=rng) output_path = "./experiments/fabolas/results/cnn_%s/hyperband_%d" % ( dataset, run_id) elif dataset == "svhn":
from robo.fmin import mtbo from hpolib.benchmarks.ml.svm_benchmark import SvmOnMnist, SvmOnVehicle, SvmOnCovertype, SvmOnAdult, SvmOnHiggs, SvmOnLetter from hpolib.benchmarks.ml.residual_networks import ResidualNeuralNetworkOnCIFAR10 from hpolib.benchmarks.ml.conv_net import ConvolutionalNeuralNetworkOnCIFAR10, ConvolutionalNeuralNetworkOnSVHN run_id = int(sys.argv[1]) dataset = sys.argv[2] seed = int(sys.argv[3]) rng = np.random.RandomState(seed) if dataset == "mnist": f = SvmOnMnist(rng=rng) num_iterations = 30 output_path = "./experiments/fabolas/results/svm_%s/mtbo_%d" % (dataset, run_id) elif dataset == "vehicle": f = SvmOnVehicle(rng=rng) num_iterations = 30 output_path = "./experiments/fabolas/results/svm_%s/mtbo_%d" % (dataset, run_id) elif dataset == "covertype": f = SvmOnCovertype(rng=rng) num_iterations = 30 output_path = "./experiments/fabolas/results/svm_%s/mtbo_%d" % (dataset, run_id) elif dataset == "adult": f = SvmOnAdult(rng=rng) num_iterations = 30 output_path = "./experiments/fabolas/results/svm_%s/mtbo_%d" % (dataset, run_id) elif dataset == "letter":
from robo.solver.hyperband_datasets_size_original_incumbent import HyperBand_DataSubsetsOriginalIncumbent from hpolib.benchmarks.ml.svm_benchmark import SvmOnMnist, SvmOnVehicle, SvmOnCovertype, SvmOnAdult, SvmOnHiggs, SvmOnLetter from hpolib.benchmarks.ml.residual_networks import ResidualNeuralNetworkOnCIFAR10 from hpolib.benchmarks.ml.conv_net import ConvolutionalNeuralNetworkOnCIFAR10, ConvolutionalNeuralNetworkOnSVHN run_id = int(sys.argv[1]) dataset = sys.argv[2] seed = int(sys.argv[3]) rng = np.random.RandomState(seed) if dataset == "mnist": f = SvmOnMnist(rng=rng) output_path = "./experiments/fabolas/results/svm_%s/hyperband_%d" % (dataset, run_id) elif dataset == "vehicle": f = SvmOnVehicle(rng=rng) output_path = "./experiments/fabolas/results/svm_%s/hyperband_%d" % (dataset, run_id) elif dataset == "covertype": f = SvmOnCovertype(rng=rng) output_path = "./experiments/fabolas/results/svm_%s/hyperband_%d" % (dataset, run_id) elif dataset == "higgs": f = SvmOnHiggs(rng=rng) output_path = "./experiments/fabolas/results/svm_%s/hyperband_%d" % (dataset, run_id) elif dataset == "adult": f = SvmOnAdult(rng=rng) output_path = "./experiments/fabolas/results/svm_%s/hyperband_%d" % (dataset, run_id) elif dataset == "letter": f = SvmOnLetter(rng=rng)