from hpp.corbaserver.rbprm.anymal_abstract import Robot from hpp.gepetto import Viewer from hpp.corbaserver import ProblemSolver import numpy as np import time #~ statusFilename = "/res/infos.log" statusFilename = "/tmp/infos.log" vMax = 0.3 # linear velocity bound for the root aMax = 1. # linear acceleration bound for the root extraDof = 6 mu = 0.5 # coefficient of friction # Creating an instance of the helper class, and loading the robot # Creating an instance of the helper class, and loading the robot rbprmBuilder = Robot() # Define bounds for the root : bounding box of the scenario root_bounds = [-2, 2, -2, 2, 0.4, 0.5] rbprmBuilder.setJointBounds("root_joint", root_bounds) # The following lines set constraint on the valid configurations: # a configuration is valid only if all limbs can create a contact with the corresponding afforcances type rbprmBuilder.setFilter(rbprmBuilder.urdfNameRom) for rom in rbprmBuilder.urdfNameRom: rbprmBuilder.setAffordanceFilter(rom, ['Support']) # We also bound the rotations of the torso. (z, y, x) rbprmBuilder.boundSO3([-1.7, 1.7, -0.1, 0.1, -0.1, 0.1]) # Add 6 extraDOF to the problem, used to store the linear velocity and acceleration of the root rbprmBuilder.client.robot.setDimensionExtraConfigSpace(extraDof) # We set the bounds of this extraDof with velocity and acceleration bounds (expect on z axis) rbprmBuilder.client.robot.setExtraConfigSpaceBounds(
def load_rbprm(self): from hpp.corbaserver.rbprm.anymal_abstract import Robot self.rbprmBuilder = Robot()
import math statusFilename = "infos.log" REF_Z_VALUE = 0.47 Z_VALUE_LOGS = REF_Z_VALUE + 0.13 Z_VALUE_PALET = REF_Z_VALUE + 0.165 Z_VALUE_WOOD = REF_Z_VALUE + 0.15 Y_VALUE = -0.13 vInit = 0.01 vMax = 0.5# linear velocity bound for the root aMax = 0.5# linear acceleration bound for the root aMaxZ = 5. extraDof = 6 mu=0.5# coefficient of friction # Creating an instance of the helper class, and loading the robot # Creating an instance of the helper class, and loading the robot rbprmBuilder = Robot () # Define bounds for the root : bounding box of the scenario rootBounds = [-1.201,1.11, Y_VALUE-0.001, Y_VALUE+0.001, Z_VALUE_LOGS - 0.001, Z_VALUE_PALET + 0.06] rbprmBuilder.setJointBounds ("root_joint", rootBounds) # The following lines set constraint on the valid configurations: # a configuration is valid only if all limbs can create a contact with the corresponding afforcances type rbprmBuilder.setFilter(Robot.urdfNameRom) for rom in rbprmBuilder.urdfNameRom : rbprmBuilder.setAffordanceFilter(rom, ['Support']) # We also bound the rotations of the torso. (z, y, x) rbprmBuilder.boundSO3([-0.01,0.01,-0.01,0.01,-0.01,0.01]) # Add 6 extraDOF to the problem, used to store the linear velocity and acceleration of the root rbprmBuilder.client.robot.setDimensionExtraConfigSpace(extraDof) # We set the bounds of this extraDof with velocity and acceleration bounds (expect on z axis)
from hpp.corbaserver.rbprm.anymal_abstract import Robot from hpp.gepetto import Viewer from hpp.corbaserver import ProblemSolver import numpy as np import time statusFilename = "/tmp/infos.log" vMax = 0.3# linear velocity bound for the root aMax = 1.# linear acceleration bound for the root extraDof = 6 mu=0.5# coefficient of friction # Creating an instance of the helper class, and loading the robot # Creating an instance of the helper class, and loading the robot rbprmBuilder = Robot () # Define bounds for the root : bounding box of the scenario root_bounds = cfg.ROOT_BOUNDS rbprmBuilder.setJointBounds ("root_joint", root_bounds) # The following lines set constraint on the valid configurations: # a configuration is valid only if all limbs can create a contact with the corresponding afforcances type rbprmBuilder.setFilter(rbprmBuilder.urdfNameRom) for rom in rbprmBuilder.urdfNameRom : rbprmBuilder.setAffordanceFilter(rom, ['Support']) #~ rbprmBuilder.setAffordanceFilter("front_prong", ['Support']) # We also bound the rotations of the torso. (z, y, x) #~ rbprmBuilder.boundSO3([-1.7,1.7,-0.1,0.1,-0.1,0.1]) rbprmBuilder.boundSO3([-3,3,-3.,3.,-3.,-3]) # Add 6 extraDOF to the problem, used to store the linear velocity and acceleration of the root