Exemple #1
0
 def __init__(self,
              instrument,
              start_time_datetime,
              end_time_datetime,
              timeres_timedelta=None,
              maxtimeslice_timedelta=None,
              min_alt_m=None,
              max_alt_m=None,
              altres_m=None,
              process_defaults=None,
              data_request=None):
     print '**** dpl_rti is deprecated. use dpl_hsrl'
     self.dpl = dpl_hsrl(instrument=instrument,
                         maxtimeslice_timedelta=maxtimeslice_timedelta,
                         process_defaults=process_defaults,
                         data_request=data_request)
     self.timeslice = maxtimeslice_timedelta
     self.parms = {
         'start_time_datetime': start_time_datetime,
         'end_time_datetime': end_time_datetime,
         'timeres_timedelta': timeres_timedelta,
         'min_alt_m': min_alt_m,
         'max_alt_m': max_alt_m,
         'altres_m': altres_m
     }
     import lg_base.core.array_utils as hau  #import T_Array,Z_Array,TZ_Array,Time_Z_Group
     self.rs_static = hau.rs_xfer()
     #self.rs_static.processing_defaults = self.dpl.get_processing_defaults(process_defaults)[0]
     return
Exemple #2
0
    def __init__(self, instrument, startTime, endTime, 
                 window=5*60 ,
                 process_control = None, minalt_km=0, 
                 maxalt_km = 15):
 
        self.instrument = instrument
        self.startTime = startTime
        self.endTime = endTime
        self.currentStart = startTime
        self.window = timedelta(seconds=window)
        self.process_control = process_control
        self.minalt_km = minalt_km
        self.maxalt_km = maxalt_km
        frame_substruct.SubstructBrancher.multiprocessable=False 
        self.dplobj=dpl_hsrl(instrument=self.instrument,
                        process_control=self.process_control)
Exemple #3
0
def showL3Shift(inst, start, end, cal):
    from hsrl.dpl.dpl_hsrl import dpl_hsrl
    dpl = dpl_hsrl(inst, filetype='data')
    r = dpl(start_time_datetime=start,
            end_time_datetime=end,
            min_alt_m=0,
            max_alt_m=5000,
            forimage=False,
            raw_only=True,
            with_profiles=False)
    myvars = ('times', 'interf_freq', 'filtered_energy', 'nonfiltered_energy',
              'l3cavityvoltage', 'l3locking_stats', 'superseedlasercontrollog',
              'molecular_cal_pulse')
    content = dict()
    for x in r:
        for v in myvars:
            if not hasattr(x.rs_raw, v):
                print 'no ', v
            if v not in content:
                content[v] = getattr(x.rs_raw, v).copy()
            else:
                content[v].append(getattr(x.rs_raw, v))
    if len(content.keys()) == 0:
        return None
    interfoffset = content['interf_freq']
    seedoffset = content['superseedlasercontrollog'][:, 7] * r.hsrl_constants[
        'seedlaser_temp_to_freq']
    ratio = content['filtered_energy'][:, 0] / content['nonfiltered_energy'][:,
                                                                             0]
    l3slope = content['l3locking_stats'][:, 0].copy()
    #plt.subplot(411);plt.plot(content['times'],ratio)
    plt.subplot(412)
    plt.plot(content['times'], seedoffset, 'b', content['times'], interfoffset,
             'r')
    plt.subplot(413)
    plt.plot(content['times'], l3slope, 'b')
    ret = np.polyval(cal, l3slope)
    plt.subplot(414)
    plt.plot(content['times'], ret, 'g')
    #plt.subplot(414);plt.plot(seedoffset,l3slope,seedfit,l3slope)
    #plt.show()
    return ret
Exemple #4
0
def write_cfradial(output_filename,
                   start_dt,
                   minutes,
                   timeres_s=5,
                   altres_m=60,
                   maxtimeslice_td=datetime.timedelta(seconds=30 * 60),
                   instrument='gvhsrl',
                   min_alt_m=0,
                   max_alt_m=5000,
                   store_calibrations=False):
    """ writes HSRL data in CfRadial netcdf format

          output_filename        = where to write the data
          start_td             = = datetime.datetime object first time to retrieve.
          minutes                = how many minutes to process
          timeres_s              = time resolution in seconds (native would be 2.5)
          altres_m               = altitude resolution in meters
          maxtimeslice_timedelta = datetime.timedelta object for amount of data processed (safe is 1 or 2 hours)
          instrument             = hsrl id string (eg. 'ahsrl','gvhsrl','nshsrl','mf2hsrl').
          min_alt_m              = minimum altitude in meters to display
          max_alt_m              = maximum altitude in meters to display.
    """

    cdl = locate_file('hsrl_cfradial.cdl', forModule=lgtb)
    print 'CDL = ', cdl
    timeres_td = datetime.timedelta(seconds=timeres_s)

    netcdf = Dataset(output_filename, 'w', clobber=True)
    delta = datetime.timedelta(minutes=minutes)
    timeres_delta = datetime.timedelta(seconds=timeres_s)
    end_dt = start_dt + delta

    gen = dpl_hsrl(instrument)

    if store_calibrations:  # to store calibrations, newer actors are needed, as well as the precall methods (FIXME better design)
        import maestro.netcdf_precall as npc
        args = []
        kwargs = dict(output=netcdf,
                      template=cdl,
                      usecfradial=True,
                      basetime=start_dt)
        x = npc.addConstantsToParms(npc.addCalibrationsToNetCDF())
        hsrlnar = gen(start_dt,
                      end_dt,
                      timeres_timedelta=timeres_delta,
                      min_alt_m=min_alt_m,
                      max_alt_m=max_alt_m,
                      altres_m=altres_m)
        x(hsrlnar, args, kwargs)
        nar = artists.dpl_netcdf_artist(hsrlnar, *args, **kwargs)
        #framestream,template,outputfilename=None,format=None,usecfradial=None,selected_bindings=None,output=None,forModule=None,withUnlimited=None,basetime=None,addAttributes={}):
        for x in nar:
            pass
    else:
        v = None
        try:
            # store each lidar record
            for tzg in gen(start_dt,
                           end_dt,
                           timeres_timedelta=timeres_delta,
                           min_alt_m=min_alt_m,
                           max_alt_m=max_alt_m,
                           altres_m=altres_m):
                if v == None:
                    v = cfr.DplCreateCfradial(cdl, netcdf, tzg)
                v.append_data(tzg)

            v.close()

        except RuntimeError, msg:
            print msg
            traceback.print_exc()
            print 'write_cfradial: could not process data for %s starting at %s' % \
                  (instrument, start_dt.strftime('%Y-%m-%d %H:%M:%S'))
Exemple #5
0
 def __init__(self, inst):
     from hsrl.dpl.dpl_hsrl import dpl_hsrl
     self.dpl = dpl_hsrl(inst, filetype='calibration')
def makeArchiveImages(instrument,datetimestart,range_km=15,full24hour=None,filename=None,reprocess=False,attenuated=False,frappe=False,ir1064=False,ismf2ship=False,completeframe=None,*args,**kwargs):
    import lg_dpl_toolbox.filters.substruct as frame_substruct
    frame_substruct.SubstructBrancher.multiprocessable=False
    from lg_dpl_toolbox.dpl.dpl_read_templatenetcdf import dpl_read_templatenetcdf
    from lg_dpl_toolbox.filters.time_frame import FrameCachedConcatenate
    from hsrl.dpl.dpl_hsrl import dpl_hsrl
    from radar.dpl.dpl_radar import dpl_radar
    from lg_dpl_toolbox.dpl.dpl_create_templatenetcdf import dpl_create_templatenetcdf
    import hsrl.dpl.dpl_artists as hsrl_artists
    import radar.dpl.dpl_artists as radar_artists
    import raman.dpl.dpl_artists as raman_artists

    import lg_dpl_toolbox.core.archival as hru
    import hsrl.graphics.hsrl_display as du
    if filename!=None:
        useFile=True
    else:
         useFile=False #True
    if not useFile or not os.access(filename,os.F_OK):
        reprocess=True
    realend=None
    #process_control=None
    if reprocess:
        print datetime
        #instrument='ahsrl'
        if useFile:
            n=Dataset(filename,'w',clobber=True)
            n.instrument=instrument
        print datetime
        realstart=datetimestart
        if full24hour==None:
            realstart=datetimestart.replace(hour=0 if datetimestart.hour<12 else 12,minute=0,second=0,microsecond=0)
        elif frappe:
            realstart=datetimestart.replace(hour=0,minute=0,second=0,microsecond=0)
        elif ismf2ship:
            realend=realstart
            realstart=realstart-timedelta(days=2.0)
        else:
            realstart=realstart-timedelta(days=1.0)
        if 'realstart' in kwargs:
            realstart=kwargs['realstart']
        if realend is None:
            realend=realstart+timedelta(days=.5 if full24hour==None else 1.0)
        if 'realend' in kwargs:
            realend=kwargs['realend']
        isHsrl=False
        isRadar=False
        isRaman=False
        instrumentprefix=None
        if instrument.endswith('hsrl'):
            dpl=dpl_hsrl(instrument=instrument,filetype='data')
            dpl.hsrl_process_control.set_value('quality_assurance','enable',False)
            #dpl.hsrl_process_control.set_value('extinction_processing','enable',False)
            dpl.hsrl_process_control.set_value('wfov_corr','enable',False)
            gen=dpl(start_time_datetime=realstart,end_time_datetime=realend,min_alt_m=0,max_alt_m=range_km*1000,with_profiles=False)
            isHsrl=True
            #process_control=gen.hsrl_process_control
            hsrlinstrument=instrument
            if os.getenv('COMPLETEFRAME',completeframe)==None:
                import lg_dpl_toolbox.filters.substruct as frame_substruct
                dropcontent=['rs_raw','rs_mean']
                gen=frame_substruct.DropFrameContent(gen,dropcontent)

        elif ('kazr' in instrument) or ('mwacr' in instrument) or instrument=='mmcr':
            dpl=dpl_radar(instrument=instrument)
            gen=dpl(start_time_datetime=realstart,end_time_datetime=realend,min_alt_m=0,max_alt_m=range_km*1000,forimage=True,allow_nans=True)
            hsrlinstrument=dpl.instrumentbase
            isRadar=True
            if 'mwacr' in instrument:
                instrumentprefix='mwacr'
            else:
                instrumentprefix='radar'
            #merge=picnicsession.PicnicProgressNarrator(dplc,getLastOf('start'), searchparms['start_time_datetime'],searchparms['end_time_datetime'],session)
            #hasProgress=True
        elif instrument.startswith('rlprof'):
            from raman.dpl.raman_dpl import dpl_raman
            import lg_dpl_toolbox.filters.time_frame as time_slicing
            dpl=dpl_raman('bagohsrl',instrument.replace('rlprof',''))
            gen=dpl(start_time_datetime=realstart,end_time_datetime=realend,min_alt_m=0,max_alt_m=range_km*1000,forimage=True,allow_nans=True,inclusive=True)
            import functools
            import lg_base.core.array_utils as hau
            from dplkit.simple.blender import TimeInterpolatedMerge
            import lg_dpl_toolbox.filters.substruct as frame_substruct
            import lg_dpl_toolbox.dpl.TimeSource as TimeSource
            import lg_base.core.canvas_info as ci
            gen=time_slicing.TimeGinsu(gen,timefield='times',dtfield=None)
            forimage=ci.load_canvas_info()['canvas_pixels']
            timesource=TimeSource.TimeGenerator(realstart,realend,time_step_count=forimage['x'])
            gen=TimeInterpolatedMerge(timesource,[gen], allow_nans=True)
            gen=TimeSource.AddAppendableTime(gen,'times','delta_t')
            gen=frame_substruct.Retyper(gen,functools.partial(hau.Time_Z_Group,timevarname='times',altname='altitudes'))
            hsrlinstrument='bagohsrl'
            instrumentprefix=instrument
            isRaman=True


    if reprocess and useFile:
        v=None

        for i in gen:
            if v==None:
                v=dpl_create_templatenetcdf(locate_file('hsrl_nomenclature.cdl'),n,i)
            v.appendtemplatedata(i)
        #raise TypeError
        #break
            n.sync()
        n.close()

        #fn='outtest.nc'

    if useFile:
        v=dpl_read_templatenetcdf(filename)

        instrument=v.raw_netcdf().instrument[:]
    else:
        v=gen

    defaultjson='archive_plots.json'
    if ismf2ship:
        defaultjson='mf2ship_plots.json'
    (disp,conf)=du.get_display_defaults(os.getenv("PLOTSJSON",defaultjson))
  
    v=FrameCachedConcatenate(v)
    import lg_dpl_toolbox.dpl.TimeSource as TimeSource
    import lg_dpl_toolbox.filters.fill as fill
    import lg_base.core.canvas_info as ci
    forimage=ci.load_canvas_info()['canvas_pixels']
    ts=TimeSource.TimeGenerator(realstart,realend,time_step_count=forimage['x'])
    v=fill.FillIn(v,[np.array([x['start'] for x in ts])],ignoreGroups=ignoreSomeGroups)

    rs=None
    for n in v:
        if rs==None:
            rs=n
        else:
            rs.append(n)
        if isHsrl:
            if attenuated:
                bsfigname='atten_backscat_image'
                bsprefix='attbscat'
                disp.set_value(bsfigname,'enable',1)
                disp.set_value('backscat_image','enable',0)
                disp.set_value('linear_depol_image','figure',bsfigname)
                #disp.set_value('circular_depol_image','figure',bsfigname)
            else:
                bsfigname='backscat_image'
                bsprefix='bscat'
            if ir1064 or (hasattr(rs,'rs_inv') and hasattr(rs.rs_inv,'color_ratio')):
                disp.set_value('raw_color_ratio_image','enable',1)
                disp.set_value('color_ratio_image','enable',1)
            #if hasattr(rs.rs_inv,'circular_depol'):
            #    disp.set_value('linear_depol_image','enable',0) #this modification works because the artist doesn't render until after the yield
            #    field='circular_depol'
            #else:
            #disp.set_value('circular_depol_image','enable',0)
            field='linear_depol'


    if isHsrl:
        #if process_control==None:
        #    print 'loading process control from json'
        #    process_control=jc.json_config(locate_file('process_control.json'),'process_defaults')
        v=hsrl_artists.dpl_images_artist(v,instrument=instrument,max_alt=None,display_defaults=disp)
    elif isRadar:
        v=radar_artists.dpl_radar_images_artist(framestream=v,instrument=v.radarType,display_defaults=disp,subframe=None)
    elif isRaman:
        v=raman_artists.dpl_raman_images_artist(framestream=v,display_defaults=disp)

    for n in v:
        pass #run once more with cached value and actual artists

    usedpi=90

    #rs=Rti('ahsrl',stime.strftime('%d-%b-%y %H:%M'),dtime.total_seconds()/(60*60),minalt_km,maxalt_km,.5,'archive_plots.json')
    imtime=realstart
    imetime=realend
    imtimestr=imtime.strftime('%e-%b-%Y ')
    file_timetag=imtime.strftime("_%Y%m%dT%H%M_")+imetime.strftime("%H%M_")+("%i" % range_km)
    if not full24hour:
        imtimestr+= ('AM' if imtime.hour<12 else 'PM' )
        file_timetag+="_am" if imtime.hour<12 else "_pm"
    filelocation=hru.get_path_to_data(hsrlinstrument,None)
    print filelocation
    filelocation=os.path.join(filelocation,imtime.strftime("%Y/%m/%d/images/"))
    try:
        os.makedirs(filelocation)
    except OSError:
        pass
    print filelocation
    if os.getenv("DEBUG",None):
        filelocation='.'
        print 'DEBUG is on. storing in current directory'
    figs=v.figs
    extensionsList=('.png','.jpg','.gif','.jpeg')
    preferredFormat='jpg'
    preferredExtension='.'+preferredFormat
    if isHsrl:
        #figs=du.show_images(instrument,rs,None,{},process_control,disp,None,None,None)

        #for x in figs:
        #    fig = figs.figure(x)
        #    fig.canvas.draw()
        
        print figs
        f=figs.figure(bsfigname)
        #f.set_size_inches(f.get_size_inches(),forward=True)
        if frappe:
            frappetag=imtime.strftime('upperair.UW_HSRL.%Y%m%d%H%M.BAO_UWRTV_')
            hiresfile=os.path.join('.',frappetag+'backscatter_%ikm%s' %(range_km,preferredExtension))
            ensureOnlyOne(hiresfile,extensionsList)
            f.savefig(hiresfile,format=preferredFormat,bbox_inches='tight')
        else:
            hiresfile=os.path.join(filelocation,bsprefix+"_depol" + file_timetag + preferredExtension)
            ensureOnlyOne(hiresfile,extensionsList)
            f.savefig(hiresfile,format=preferredFormat,bbox_inches='tight')
        if disp.enabled('raw_color_ratio_image'):
            f=figs.figure('color_ratio_image')
            #f.set_size_inches(f.get_size_inches(),forward=True)
            hiresfileir=os.path.join(filelocation,"ratioIR" + file_timetag + preferredExtension)
            ensureOnlyOne(hiresfileir,extensionsList)
            f.savefig(hiresfileir,format=preferredFormat,bbox_inches='tight')
        figs.close()

        if not full24hour and hasattr(rs,'rs_inv'):
            scale = [float(disp.get_value(bsfigname,'lo_color_lmt')),
                     float(disp.get_value(bsfigname,'hi_color_lmt'))]
            depol=100*getattr(rs.rs_inv,field)
            depolscale = [float(disp.get_value(field+'_image', 'lo_color_lmt')),
                          float(disp.get_value(field+'_image', 'hi_color_lmt'))]

            if attenuated:
                backscat=rs.rs_inv.atten_beta_a_backscat
            elif hasattr(rs.rs_inv,'beta_a_backscat'):
                backscat=rs.rs_inv.beta_a_backscat
            else:
                backscat=rs.rs_inv.beta_a_backscat_par + rs.rs_inv.beta_a_backscat_perp 
            print rs.rs_inv.times.shape
            print backscat.shape
            if disp.get_value(bsfigname,"log_linear")=='log':
                scale=np.log10(scale)
                backscat[backscat<=0]=np.NAN;
                backscat=np.log10(backscat)
            if disp.get_value(field+'_image',"log_linear")=='log':
                depol[depol<=0]=np.NAN;
                depolscale=np.log10(depolscale)
                depol=np.log10(depol)
            print backscat.shape
            qc_mask=None
            if hasattr(rs.rs_inv,'qc_mask'):
               qc_mask=np.ones_like(rs.rs_inv.qc_mask)           
               qcbits={'mol_lost':64,'mol_sn_ratio':16,'cloud_mask':128,'I2_lock_lost':4}
               for name,maskbit in qcbits.items():
                 if disp.get_value('mask_image',name):
                   qc_mask = np.logical_and(rs.rs_inv.qc_mask & maskbit > 0,qc_mask)
            #print np.sum(backscat<=0)
            f=tinythumb(backscat,scale,imtimestr,dpi=usedpi,qcmask=qc_mask)
            thumbname=os.path.join(filelocation,bsprefix + file_timetag + '_thumb'+preferredExtension)
            print thumbname
            ensureOnlyOne(thumbname,extensionsList)
            f.savefig(thumbname,format=preferredFormat,bbox_inches='tight',dpi=usedpi)
            trimborder(thumbname)
            
            f=tinythumb(depol,depolscale,imtimestr,dpi=usedpi,qcmask=qc_mask)
            thumbname=os.path.join(filelocation,'depol' + file_timetag + '_thumb'+preferredExtension)
            ensureOnlyOne(thumbname,extensionsList)
            f.savefig(thumbname,format=preferredFormat,bbox_inches='tight',dpi=usedpi)
            trimborder(thumbname)

            if ir1064 or hasattr(rs.rs_inv,'color_ratio'):
                if hasattr(rs.rs_inv,'qc_mask'):
                   qc_mask=np.ones_like(rs.rs_inv.qc_mask)           
                   qcbits={'mol_lost':64,'mol_sn_ratio':16,'cloud_mask':128,'I2_lock_lost':4,'1064_shutter':0x8000}
                   for name,maskbit in qcbits.items():
                        if disp.get_value('mask_image',name):
                            qc_mask = np.logical_and(rs.rs_inv.qc_mask & maskbit > 0,qc_mask)
                cr=rs.rs_inv.color_ratio
                scale = [float(disp.get_value('color_ratio_image','lo_color_lmt')),
                         float(disp.get_value('color_ratio_image','hi_color_lmt'))]
                if disp.get_value('color_ratio_image',"log_linear")=='log':
                    scale=np.log10(scale)
                    cr[cr<=0]=np.NAN;
                    cr=np.log10(cr)
                f=tinythumb(cr,scale,imtimestr,dpi=usedpi,qcmask=qc_mask)
                thumbname=os.path.join(filelocation,'ratioIR' + file_timetag + '_thumb'+preferredExtension)
                print thumbname
                ensureOnlyOne(thumbname,extensionsList)
                f.savefig(thumbname,format=preferredFormat,bbox_inches='tight',dpi=usedpi)
                trimborder(thumbname)


    elif isRadar:
        f=figs.figure('radar_backscatter_image')
        #f.set_size_inches(f.get_size_inches(),forward=True)
        hiresfile=os.path.join(filelocation,instrumentprefix+"_bscat" + file_timetag + preferredExtension)
        ensureOnlyOne(hiresfile,extensionsList)
        f.savefig(hiresfile,format=preferredFormat,bbox_inches='tight')
        figs.close()
        if not full24hour:
            radarscale = [float(disp.get_value('radar_backscatter_image', 'lo_color_lmt')),
                          float(disp.get_value('radar_backscatter_image', 'hi_color_lmt'))]
            radar=rs.Backscatter
            if disp.get_value('radar_backscatter_image','log_linear')=='log':
                radar[radar<=0]=np.NAN
                radarscale=np.log10(radarscale)
                radar=np.log10(radar)
            f=tinythumb(radar,radarscale,imtimestr,dpi=usedpi)
            thumbname=os.path.join(filelocation,instrumentprefix+'_bscat' + file_timetag + '_thumb'+preferredExtension)
            ensureOnlyOne(thumbname,extensionsList)
            f.savefig(thumbname,format=preferredFormat,bbox_inches='tight',dpi=usedpi)
            trimborder(thumbname)
    elif isRaman:
        if hasattr(rs,'backscatter'):
            f=figs.figure('rl_backscatter_image')
            #f.set_size_inches(f.get_size_inches(),forward=True)
            hiresfile=os.path.join(filelocation,instrumentprefix+"_bscat" + file_timetag + preferredExtension)
            ensureOnlyOne(hiresfile,extensionsList)
            f.savefig(hiresfile,format=preferredFormat,bbox_inches='tight')
        elif hasattr(rs,'beta'):
            f=figs.figure('rl_backscatter_image')
            #f.set_size_inches(f.get_size_inches(),forward=True)
            hiresfile=os.path.join(filelocation,instrumentprefix+"_beta" + file_timetag + preferredExtension)
            ensureOnlyOne(hiresfile,extensionsList)
            f.savefig(hiresfile,format=preferredFormat,bbox_inches='tight')
        if hasattr(rs,'linear_depol'):
            f=figs.figure('rl_depol_image')
            #f.set_size_inches(f.get_size_inches(),forward=True)
            hiresfile=os.path.join(filelocation,instrumentprefix+"_dep" + file_timetag + preferredExtension)
            ensureOnlyOne(hiresfile,extensionsList)
            f.savefig(hiresfile,format=preferredFormat,bbox_inches='tight')
        figs.close()
        if not full24hour:
            if hasattr(rs,'backscatter'):
                ramanscale = [float(disp.get_value('rl_backscatter_image', 'lo_color_lmt')),
                              float(disp.get_value('rl_backscatter_image', 'hi_color_lmt'))]
                raman=rs.backscatter.copy()
                #print np.nanmax(raman),np.nanmin(raman),' is ramans actual range'
                if disp.get_value('rl_backscatter_image','log_linear')=='log':
                    raman[raman<=0]=np.NAN
                    ramanscale=np.log10(ramanscale)
                    raman=np.log10(raman)
                f=tinythumb(raman,ramanscale,imtimestr,dpi=usedpi)
                thumbname=os.path.join(filelocation,instrumentprefix+'_bscat' + file_timetag + '_thumb'+preferredExtension)
                ensureOnlyOne(thumbname,extensionsList)
                f.savefig(thumbname,format=preferredFormat,bbox_inches='tight',dpi=usedpi)
                trimborder(thumbname)
            if hasattr(rs,'beta'):
                ramanscale = [float(disp.get_value('rl_backscatter_image', 'lo_color_lmt')),
                              float(disp.get_value('rl_backscatter_image', 'hi_color_lmt'))]
                raman=rs.beta.copy()
                #print np.nanmax(raman),np.nanmin(raman),' is ramans actual range'
                if disp.get_value('rl_backscatter_image','log_linear')=='log':
                    raman[raman<=0]=np.NAN
                    ramanscale=np.log10(ramanscale)
                    raman=np.log10(raman)
                f=tinythumb(raman,ramanscale,imtimestr,dpi=usedpi)
                thumbname=os.path.join(filelocation,instrumentprefix+'_beta' + file_timetag + '_thumb'+preferredExtension)
                ensureOnlyOne(thumbname,extensionsList)
                f.savefig(thumbname,format=preferredFormat,bbox_inches='tight',dpi=usedpi)
                trimborder(thumbname)
            if hasattr(rs,'linear_depol'):
                ramanscale = [float(disp.get_value('rl_depol_image', 'lo_color_lmt')),
                              float(disp.get_value('rl_depol_image', 'hi_color_lmt'))]
                raman=rs.linear_depol.copy()
                #print np.nanmax(raman),np.nanmin(raman),' is ramans actual range'
                if disp.get_value('rl_depol_image','log_linear')=='log':
                    raman[raman<=0]=np.NAN
                    ramanscale=np.log10(ramanscale)
                    raman=np.log10(raman)
                f=tinythumb(raman,ramanscale,imtimestr,dpi=usedpi)
                thumbname=os.path.join(filelocation,instrumentprefix+'_dep' + file_timetag + '_thumb'+preferredExtension)
                ensureOnlyOne(thumbname,extensionsList)
                f.savefig(thumbname,format=preferredFormat,bbox_inches='tight',dpi=usedpi)
                trimborder(thumbname)

    today=datetime.utcnow()
    if not frappe and not ismf2ship and full24hour and imetime.year==today.year and imetime.month==today.month and imetime.day==today.day:
        destpath=os.getenv("DAYSTORE",os.path.join('/','var','ftp','public_html','hsrl'))
        destfile=os.path.join(destpath,full24hour + '_current'+preferredExtension)
        fulln=hiresfile
        if not fulln:
            return
        outf=file(destfile,'w')
        inf=file(fulln,'r')
        ensureOnlyOne(destfile,extensionsList)
        outf.write(inf.read())
        inf.close()
        outf.close()
        os.unlink(fulln)
    elif ismf2ship:
        if not hiresfile:
            return
        destpath='./'#os.getenv("DAYSTORE",os.path.join('/','var','ftp','public_html','hsrl'))
        destfile=os.path.join(destpath,realend.strftime('hsrl_%Y%m%d%H%M')+preferredExtension)
        fulln=hiresfile
        outf=file(destfile,'w')
        inf=file(fulln,'r')
        ensureOnlyOne(destfile,extensionsList)
        outf.write(inf.read())
        inf.close()
        outf.close()
        os.unlink(fulln)
        recompressImage(destfile,quality=30,optimize=True)
        varlist=('rs_mean.times','rs_mean.latitude','rs_mean.longitude','rs_mean.transmitted_energy','rs_mean.seedvoltage',\
            'rs_mean.seeded_shots','rs_mean.coolant_temperature','rs_mean.laserpowervalues','rs_mean.opticalbenchairpressure',\
            'rs_mean.humidity','rs_mean.l3locking_stats','rs_mean.l3cavityvoltage','rs_mean.nonfiltered_energy','rs_mean.filtered_energy',\
            'rs_mean.builduptime','rs_mean.one_wire_temperatures')
        skip=0
        while skip<16:
           try:
              print 'skip is ',skip
              addExifComment(destfile,makedict(n,varlist,skip=skip))
              break
           except Exception as e:
              skip+=1
              print e
              traceback.print_exc()
              pass
        sendSCPFile(destfile,host='198.129.80.15',path='/ftpdata/outgoing',user='******',keyfile=os.getenv('MF2_HSRL_KEY'))
    elif frappe:
        if not hiresfile:
            return
        sendFTPFile(hiresfile,host='catalog.eol.ucar.edu',path='/pub/incoming/catalog/frappe/',user='******',password='******')
Exemple #7
0
def main():
    from dpl_filters import QAFlagClonedSyncFilter
    from dpl_narrators import QCFlagNarrator, QCLogNarrator
    import dpl_zookeeper as qazoo
    import dpl_librarian as qalib
    #from parsing import fileParser,flagParser
    from hsrl.dpl.dpl_hsrl import dpl_hsrl
    import lg_dpl_toolbox.filters.time_frame as time_slicing
    import sys
    import json

    td = timedelta(hours=2)
    et = datetime.utcnow()
    if len(sys.argv) > 3:
        st = datetime.strptime(sys.argv[3], '%Y.%m.%dT%H:%M:%S')
    else:
        st = et - td
    if len(sys.argv) > 4:
        et = datetime.strptime(sys.argv[4], '%Y.%m.%dT%H:%M:%S')

    from lg_dpl_toolbox.dpl.TimeSource import TimeGenerator

    hsrllib = dpl_hsrl(instrument=sys.argv[2])

    import lg_base.core.canvas_info as ci
    canvas_info = ci.load_canvas_info()
    #process_control=hsrllib.hsrl_process_control
    number_x_pixels = canvas_info['canvas_pixels']['x']
    timesource = TimeGenerator(start_time=st,
                               end_time=et,
                               time_step_count=number_x_pixels)
    zookeeper = qazoo.QualityAssuranceZookeeper(
    )  #responsible for reading the files
    librarian = qalib.QualityAssuranceLibrarian(
        instrument=sys.argv[2])  #responsible for finding the files

    hsrlnar = hsrllib(min_alt_m=0, max_alt_m=20000, timesource=timesource)

    #f=fileParser()
    #fp=flagParser(hsrlnar.altitudeAxis,binwidth=hsrlnar.hsrl_constants['binwidth'] * 1.5e8)
    #x= f.parseFile(sys.argv[1])
    x = zookeeper(librarian(
        start_time=st, end_time=et))  #finding the files and reading them all
    print x
    json.dump(safeenc(x),
              file('dump.json', 'w'),
              indent=4,
              separators=(',', ': '))
    lognarr = QCLogNarrator(x, st, et)
    print 'Log Content for', st, 'to', et, 'is:'
    for e in lognarr:
        print e['header']['date'], ':', e['content'].strip()
    #assert(0)
    qcnarr = QCFlagNarrator(
        x,
        altitude_axis=hsrlnar.altitudeAxis,
        binwidth=hsrlnar.hsrl_constants['binwidth'] *
        1.5e8)  #narrator streams the read flags as a single timestep per entry
    import lg_dpl_toolbox.filters.substruct as frame_substruct

    qcnarr = QAFlagClonedSyncFilter(
        qasource=qcnarr, timealtsource=timesource, timename='start'
    )  #takes the output of the narrator, and echos entries for each timestep (and potentially project range entries to altitude)
    if False:
        hsrlnarsplitter = frame_substruct.SubstructBrancher(hsrlnar)

        #timesource=time_slicing.TimeGinsu(hsrlnarsplitter.narrateSubstruct('rs_inv'),'times',onlyTime=True)#,isEnd=True)
        #qcnarr=frame_substruct.Retyper(qcnarr,hau.Time_Z_Group,dict(timevarname='times',altname='altitudes'))
        qcnarr = frame_substruct.CountDeGinsu(
            frame_substruct.FrameLength(
                hsrlnarsplitter.narrateSubstruct('rs_inv'), 'times'), qcnarr)
        dplc = frame_substruct.NestingCompositer(
            hsrlnarsplitter.narrateSubstruct(None), dict(rs_hsrl_qc=qcnarr))
        printkeys = ('rs_inv', 'rs_hsrl_qc', 'rs_hsrl_qc.qcflags.shape',
                     'rs_hsrl_qc.qcflags')
    else:
        dplc = qcnarr
        printkeys = ('qcflags.shape', 'qcflags')

    dplc = time_slicing.FrameCachedConcatenate(dplc)

    for f in dplc:
        print vars(f).keys()
        for x in printkeys:
            print x
            print deepgetattr(f, x)
Exemple #8
0
def main(inst, startdate, enddate, sig=None):
    history = dict()
    parts = (('thermal1', 'thermal2'), ('records', 'goodrecords',
                                        'errorCount'))
    alltherms = list(makelist(parts).keys()) + ['times']
    began = datetime.utcnow()
    import hsrl.dpl.dpl_hsrl as dpl_hsrl
    from lg_dpl_toolbox.dpl.NetCDFZookeeper import GenericTemplateRemapNetCDFZookeeper
    zoo = GenericTemplateRemapNetCDFZookeeper(inst,
                                              forModule=dpl_hsrl,
                                              keepfields=alltherms)

    dpllib = dpl_hsrl.dpl_hsrl(inst, zoo=zoo)
    dpl = dpllib(start_time_datetime=startdate,
                 end_time_datetime=enddate,
                 min_alt_m=0,
                 max_alt_m=500,
                 forimage=False,
                 raw_only=True,
                 with_profiles=False)
    dpl = RawFieldSelection(dpl, alltherms, subscope='rs_raw')
    for fr in dpl:
        appendContent(history, fr)
    print('timed at ' + repr(datetime.utcnow() - began))
    print(repr(history.keys()))
    #print(retlist)
    for x in alltherms:
        print(x)
        if 'errorCount' in x:
            history[x] = history[x].astype('float')
            history[x][history[x] < 0.0] = -1
            history[x][history[x] > 1e5] = -1
            print('%f %f' % (np.nanmin(history[x]), np.nanmax(history[x])))
        elif '_records' in x:
            history[x] = history[x].astype('float')
            history[x][history[x] <= 0] = -1
            history[x][history[x] > 1e7] = -1
        elif '_goodrecords' in x:
            history[x] = history[x].astype('float')
            history[x][history[x] <= 0] = 0
            history[x][history[x] > 1e7] = 0

    plt.figure()
    plt.title(inst + " error")
    starts = history['times']
    plt.plot(starts, history['thermal1_errorCount'], 'b', starts,
             history['thermal2_errorCount'], 'r')
    plt.legend(('thermal1', 'thermal2'))
    plt.grid()
    plt.figure()
    plt.title(inst + " badcount")
    plt.plot(starts,
             history['thermal1_records'] - history['thermal1_goodrecords'],
             'b', starts,
             history['thermal2_records'] - history['thermal2_goodrecords'],
             'r')
    plt.legend(('thermal1', 'thermal2'))
    plt.grid()
    print('with all graphs timed at ' + repr(datetime.utcnow() - began))
    if sig is not None:
        with sig:
            sig.notifyAll()
    plt.show()
Exemple #9
0
def livestream(instrument,
               hours,
               starttime=None,
               process_control=None,
               display_defaults='min_plots.json',
               maxalt_km=15,
               minalt_km=0,
               now_delay=None):
    """
    Quick and simple livestream of HSRL data using DPL constructs.

    :param instrument: instrument name ('gvhsrl','bagohsrl', etc)
    :param hours: numeric number of hours to display
    :param starttime: optional starttime, if stream should begin in the past. it will still stream thru all data, and approach now regardless of this
    :type starttime: datetime
    :param process_control: process control file or object for processing parameters
    :param display_defaults: graphics output configuration file
    :param maxalt_km: maximum altitude in km. default is 15
    :param minalt_km: minimum altitude in km. default is 0
    :param now_delay: offset to consider the now time. "now" minus this value is the rolling end of the window.
    :type now_delay: timedelta
    """

    import lg_dpl_toolbox.filters.substruct as frame_substruct
    frame_substruct.SubstructBrancher.multiprocessable = False
    from hsrl.dpl.dpl_hsrl import dpl_hsrl
    import hsrl.dpl.dpl_artists as artists
    import lg_dpl_toolbox.dpl.dpl_artists as tools_artists
    import lg_dpl_toolbox.filters.threading_filter as tf
    window = timedelta(seconds=60 * 60 * hours)
    print 'display_defaults=', display_defaults
    #time.sleep(5)
    figcontainer = None
    sigg = waitforready(single_process=True)
    dplobj = dpl_hsrl(instrument=instrument, process_control=process_control)
    dplgen = dplobj(start_time_datetime=starttime,
                    reverse_padding=timedelta(
                        seconds=60) if now_delay == None else now_delay,
                    window_width_timedelta=window,
                    min_alt_m=minalt_km * 1000.0,
                    max_alt_m=maxalt_km * 1000.0,
                    with_profiles=False)
    #dplgen=signalready_filter(dplgen,sigg)
    dplgen = tf.forking_filter(dplgen, 2)
    dplgen = tf.aThreading_filter(dplgen, 2)
    #dplgen=signalready_filter(dplgen,sigg)
    maxtimeout = 30.0
    dplgen = tf.wait_filter(dplgen,
                            waitfunc=partial(plt.ginput,
                                             timeout=maxtimeout / 6),
                            maxduration=timedelta(seconds=maxtimeout))
    artist = artists.dpl_images_artist(
        framestream=tools_artists.dpl_window_caching_filter(
            dplgen, window, includeIncompleteFrames=True),
        instrument=instrument,
        max_alt=maxalt_km * 1000.0,
        processing_defaults=dplgen.hsrl_process_control,
        display_defaults=display_defaults,
        figurecontainer=figcontainer)
    #artist=tf.aThreading_filter(artist,1)
    #sleeptime=10
    #artist=input_filter(artist,"Pausing for %i seconds. Press enter to quit: " %(sleeptime),sleeptime,readier=sigg)
    return artist
Exemple #10
0
def makeL3Cal(inst, start, end, graphs=None, usel3slopecenter=True):
    from hsrl.dpl.dpl_hsrl import dpl_hsrl
    dpl = dpl_hsrl(inst)
    r = dpl(start_time_datetime=start,
            end_time_datetime=end,
            min_alt_m=0,
            max_alt_m=5000,
            forimage=False,
            raw_only=True,
            with_profiles=False)
    myvars = ('times', 'interf_freq', 'filtered_energy', 'nonfiltered_energy',
              'l3cavityvoltage', 'l3locking_stats', 'superseedlasercontrollog',
              'molecular_cal_pulse')
    content = dict()
    for x in r:
        for v in myvars:
            if not hasattr(x.rs_raw, v):
                print 'no ', v
            if v not in content:
                content[v] = getattr(x.rs_raw, v).copy()
            else:
                content[v].append(getattr(x.rs_raw, v))
    interfoffset = content['interf_freq']
    seedoffset = content['superseedlasercontrollog'][:, 7] * r.hsrl_constants[
        'seedlaser_temp_to_freq']
    seedoffset *= 1e9
    ratio = content['filtered_energy'][:, 0] / content['nonfiltered_energy'][:,
                                                                             0]
    l3slope = content['l3locking_stats'][:, 0].copy()
    ridx = np.argmin(ratio)
    sidx = np.argmin(np.abs(l3slope))
    if usel3slopecenter:
        idx = sidx
    else:
        idx = ridx
    print sidx, ridx, l3slope[idx], abs(
        seedoffset[sidx] - seedoffset[ridx]), abs(interfoffset[sidx] -
                                                  interfoffset[ridx])
    seedoffset -= seedoffset[idx]
    interfoffset -= interfoffset[idx]

    pc = np.polyfit(l3slope, seedoffset, 5)
    #pc[-1]=0.0
    if graphs is not None:
        #plt.subplot(411);plt.plot(content['times'],ratio)
        if 2 in graphs:
            plt.subplot(412)
            plt.plot(content['times'], seedoffset, 'b', content['times'],
                     interfoffset, 'r')
        if 3 in graphs:
            plt.subplot(413)
            plt.plot(content['times'], content['l3locking_stats'][:, 0], 'b')
        if 1 in graphs:
            plt.subplot(411)
            plt.plot(seedoffset, ratio, 'b')  #content['molecular_cal_pulse'])
        if 4 in graphs:
            seedfit = np.polyval(pc, l3slope)
            plt.subplot(414)
            plt.plot(seedoffset, l3slope, 'b', seedfit, l3slope, 'g')
    print 'fit', pc
    return pc
    plt.show()
Exemple #11
0
def skimcals(inst, start, end):
    from time import sleep
    from hsrl.dpl.dpl_hsrl import dpl_hsrl
    from hsrl.dpl.calibration.dpl_calibration import dpl_singlecalibration_narr
    import hsrl.dpl.dpl_artists as artists
    import lg_dpl_toolbox.filters.time_frame as time_slicing
    import lg_dpl_toolbox.filters.substruct as frame_substruct
    import hsrl.graphics.hsrl_display as du
    dropcontent = ['rs_raw', 'rs_mean']
    storage = 'cal_verify'
    try:
        os.makedirs(storage)
    except OSError:
        pass
    getfigs=('sc_ratio_profile','raw_profiles','dark_corrected_profiles','corrected_profiles','dif_geo_profiles',\
        'wfov_geo_adjust','geometry_correction','calibration_coefficients','lapse_rate','backscat_profile','sounding')
    preferredFormat = 'jpg'
    preferredExtension = '.' + preferredFormat
    withImage = True
    display_defaults = 'all_plots.json'
    print 'display_defaults=', display_defaults
    #time.sleep(5)
    dplobj = dpl_hsrl(instrument=inst)
    minalt_km = 0
    maxalt_km = 20
    altres_m = 45.0

    cals = dplobj.cal(interval_start_time=start,
                      interval_end_time=end,
                      min_alt_m=minalt_km * 1000.0,
                      max_alt_m=maxalt_km * 1000.0,
                      altres_m=altres_m)

    filename = 'cal_log_' + inst + start.strftime(
        '_%Y%m%dT%H%M%S') + end.strftime('_%Y%m%dT%H%M%S') + '.txt'
    outf = file(os.path.join(storage, filename), "w")
    cols = []

    for calv in cals:
        s = calv['chunk_start_time']
        e = calv['chunk_end_time']
        if (e - s).total_seconds() < 300:
            continue
        mycalgen = dpl_singlecalibration_narr(inst, calv,
                                              cals.hsrl_process_control,
                                              cals.corr_adjusts)
        dplgen = dplobj(start_time_datetime=s,
                        end_time_datetime=e,
                        min_alt_m=minalt_km * 1000.0,
                        max_alt_m=maxalt_km * 1000.0,
                        with_profiles=True,
                        do_inversion=False,
                        calsrc=mycalgen)
        dplgen = frame_substruct.DropFrameContent(dplgen, dropcontent)
        dplgen = time_slicing.FrameCachedConcatenate(dplgen)
        if withImage:
            (disp, conf) = du.get_display_defaults(display_defaults)
            for f in disp.get_attrs():
                disp.set_value(f, 'enable', 0)
            for f in getfigs:
                disp.set_value(f, 'enable', 1)
            dplgen = artists.dpl_images_artist(
                framestream=dplgen,
                instrument=inst,
                max_alt=maxalt_km * 1000.0,
                processing_defaults=dplgen.hsrl_process_control,
                display_defaults=disp)
        haveData = False
        for rs in dplgen:
            if hasattr(rs, 'profiles') and hasattr(rs.profiles, 'inv'):
                logData(outf, cols, rs.profiles.inv)
                haveData = True
        if withImage and haveData:
            figs = dplgen.figs
            datetag = s.strftime('%Y%m%dT%H%M%S') + e.strftime(
                '_%Y%m%dT%H%M%S')
            for f in getfigs:
                if f in figs:
                    print 'getting fig', f
                    fig = figs.figure(f)
                    hiresfile = os.path.join(
                        storage,
                        '%s_%s_%s%s' % (inst, f, datetag, preferredExtension))
                    print hiresfile
                    fig.savefig(hiresfile,
                                format=preferredFormat,
                                bbox_inches='tight')
Exemple #12
0
def main():
    from hsrl.dpl.dpl_hsrl import dpl_hsrl
    from lg_dpl_toolbox.dpl.NetCDFZookeeper import GenericTemplateRemapNetCDFZookeeper 
    import radar.dpl.MMCRMergeLibrarian as mmcr
    import radar.dpl.RadarFilters as rf
    import hsrl.dpl.dpl_artists as artists
    import functools

    import substruct
    import resample_altitude

    starttime=datetime(2006,12,24,22,0,0)
    endtime=datetime(2006,12,25,0,0,0)

    #stitcher=TimeStitch()
    #restr=SubstructRestractor('rs_mmcr')

    hsrllib=dpl_hsrl(instrument='ahsrl')
    hsrlnar=hsrllib(start_time_datetime=starttime,end_time_datetime=endtime,min_alt_m=0.0,max_alt_m=20000.0,timeres_timedelta=timedelta(seconds=30),altres_m=15)

    mmcrzoo=GenericTemplateRemapNetCDFZookeeper('eurmmcrmerge')
    mmcrlib=mmcr.MMCRMergeLibrarian('ahsrl','eurmmcrmerge.C1.c1.',zoo=mmcrzoo)
    mmcrnar=rf.RadarPrefilter(mmcrlib(start=starttime,end=endtime))
    #mmcrnar=mmcr.MMCRMergeBackscatterToReflectivity(resample_altitude.ResampleXd(TimeGinsu(substruct.SubstructExtractor(mmcrnar,None),'times',stitcherbase=stitcher),'heights',hsrlnar.getAltitudeAxis))
    mmcrnar=rf.RadarBackscatterToReflectivity(resample_altitude.ResampleXd(TimeGinsu(mmcrnar,'times'),'heights',hsrlnar.altitudeAxis.copy()))

    hsrlnarsplitter=substruct.SubstructBrancher(hsrlnar)
    #hsrlnar=TimeGinsu(substruct.SubstructExtractor(hsrlnar,'rs_inv',restractor=restr),'times',isEnd=False,stitchersync=stitcher)
    hsrlnar=TimeGinsu(hsrlnarsplitter.narrateSubstruct('rs_inv'),'times',isEnd=False)

    from dplkit.simple.blender import TimeInterpolatedMerge

    merge=TimeInterpolatedMerge(hsrlnar,[mmcrnar],allow_nans=True,channels=['heights','Reflectivity','MeanDopplerVelocity','Backscatter','SpectralWidth'])
    merge=substruct.Retyper(merge,functools.partial(hau.Time_Z_Group,timevarname='times',altname='heights'))
    #stitcher.setFramestream(merge)
    #restr.setFramestream(stitcher)
    #curs=restr
    curs=substruct.SubstructMerger('rs_inv',{
           'rs_mean':hsrlnarsplitter.narrateSubstruct('rs_mean'),
           'rs_raw':hsrlnarsplitter.narrateSubstruct('rs_raw'),
           'rs_inv':hsrlnarsplitter.narrateSubstruct('rs_inv'),
           'rs_mmcr':merge,
           'rs_init':hsrlnarsplitter.narrateSubstruct('rs_init'),
           'rs_static':hsrlnarsplitter.narrateSubstruct('rs_static'),
           'rs_Cxx':hsrlnarsplitter.narrateSubstruct('rs_Cxx'),
           'profiles':hsrlnarsplitter.narrateSubstruct('profiles',sparse=True),
        }
        ,hau.Time_Z_Group,{'timevarname':'times','altname':'heights'})
    artist=artists.dpl_images_artist(framestream=curs,
        instrument='ahsrl',max_alt=30*1000.0,processing_defaults=curs.hsrl_process_control,
        display_defaults='all_plots.json')
    curs=artist
    for frame in curs:
        print 'frame',frame
        print 'frame keys',vars(frame).keys()
        print 'rs_inv',frame.rs_inv
        print 'rs_mmcr',frame.rs_mmcr
        print 'RefShape',frame.rs_mmcr.Reflectivity.shape
        print 'MMCRTimes',frame.rs_mmcr.times.shape
        print 'invTimes',frame.rs_inv.times.shape
        print 'heights',frame.rs_mmcr.heights.shape
        for x in range(frame.rs_mmcr.times.shape[0]-1):
            if frame.rs_mmcr.times[x]==frame.rs_mmcr.times[x+1]:
                print 'dupe at',x,frame.rs_mmcr.times[x]

        #print type(frame),type(frame['Reflectivity']) if 'Reflectivity' in frame else 'no ref',type(frame['beta_a_backscat_par']) if 'beta_a_backscat_par' in frame else 'no backscat'
    time.sleep(5)