def __getitem__(self, slice_): """| Gets a slice or slices from dataset | Usage: >>> return ds["image", 5, 0:1920, 0:1080, 0:3].compute() # returns numpy array >>> images = ds["image"] >>> return images[5].compute() # returns numpy array >>> images = ds["image"] >>> image = images[5] >>> return image[0:1920, 0:1080, 0:3].compute() """ if not isinstance(slice_, abc.Iterable) or isinstance(slice_, str): slice_ = [slice_] slice_ = list(slice_) subpath, slice_list = slice_split(slice_) if not subpath: if len(slice_list) > 1: raise ValueError( "Can't slice a dataset with multiple slices without key") indexes = self.indexes[slice_list[0]] return DatasetView( dataset=self, indexes=indexes, lazy=self.lazy, ) elif not slice_list: if subpath in self.keys: tensorview = TensorView( dataset=self, subpath=subpath, slice_=slice(0, self._shape[0]), lazy=self.lazy, ) return tensorview if self.lazy else tensorview.compute() for key in self.keys: if subpath.startswith(key): objectview = ObjectView( dataset=self, subpath=subpath, lazy=self.lazy, slice_=[slice(0, self._shape[0])], ) return objectview if self.lazy else objectview.compute() return self._get_dictionary(subpath) else: schema_obj = self.schema.dict_[subpath.split("/")[1]] if subpath in self.keys and (not isinstance(schema_obj, Sequence) or len(slice_list) <= 1): tensorview = TensorView(dataset=self, subpath=subpath, slice_=slice_list, lazy=self.lazy) return tensorview if self.lazy else tensorview.compute() for key in self.keys: if subpath.startswith(key): objectview = ObjectView( dataset=self, subpath=subpath, slice_=slice_list, lazy=self.lazy, ) return objectview if self.lazy else objectview.compute() if len(slice_list) > 1: raise ValueError("You can't slice a dictionary of Tensors") return self._get_dictionary(subpath, slice_list[0])
def __getitem__(self, slice_): """| Gets a slice or slices from DatasetView | Usage: >>> ds_view = ds[5:15] >>> return ds_view["image", 7, 0:1920, 0:1080, 0:3].compute() # returns numpy array of 12th image """ if not isinstance(slice_, abc.Iterable) or isinstance(slice_, str): slice_ = [slice_] slice_ = list(slice_) subpath, slice_list = slice_split(slice_) slice_list = [0] + slice_list if isinstance(self.indexes, int) else slice_list if not subpath: if len(slice_list) > 1: raise ValueError( "Can't slice dataset with multiple slices without key") indexes = self.indexes[slice_list[0]] return DatasetView(dataset=self.dataset, lazy=self.lazy, indexes=indexes) elif not slice_list: slice_ = ([slice(self.indexes[0], self.indexes[-1] + 1)] if self.is_contiguous else [self.indexes]) if subpath in self.keys: tensorview = TensorView( dataset=self.dataset, subpath=subpath, slice_=slice_, lazy=self.lazy, ) return tensorview if self.lazy else tensorview.compute() for key in self.keys: if subpath.startswith(key): objectview = ObjectView( dataset=self.dataset, subpath=subpath, slice_=slice_, lazy=self.lazy, ) return objectview if self.lazy else objectview.compute() return self._get_dictionary(subpath, slice_) else: if isinstance(self.indexes, list): indexes = self.indexes[slice_list[0]] if self.is_contiguous and isinstance(indexes, list) and indexes: indexes = slice(indexes[0], indexes[-1] + 1) else: indexes = self.indexes slice_list[0] = indexes schema_obj = self.dataset.schema.dict_[subpath.split("/")[1]] if subpath in self.keys and (not isinstance(schema_obj, Sequence) or len(slice_list) <= 1): tensorview = TensorView( dataset=self.dataset, subpath=subpath, slice_=slice_list, lazy=self.lazy, ) return tensorview if self.lazy else tensorview.compute() for key in self.keys: if subpath.startswith(key): objectview = ObjectView( dataset=self.dataset, subpath=subpath, slice_=slice_list, lazy=self.lazy, ) return objectview if self.lazy else objectview.compute() if len(slice_list) > 1: raise ValueError("You can't slice a dictionary of Tensors") return self._get_dictionary(subpath, slice_list[0])
def __getitem__(self, slice_): """| Gets a slice or slices from dataset | Usage: >>> return ds["image", 5, 0:1920, 0:1080, 0:3].compute() # returns numpy array >>> images = ds["image"] >>> return images[5].compute() # returns numpy array >>> images = ds["image"] >>> image = images[5] >>> return image[0:1920, 0:1080, 0:3].compute() """ if not isinstance(slice_, abc.Iterable) or isinstance(slice_, str): slice_ = [slice_] slice_ = list(slice_) subpath, slice_list = slice_split(slice_) if not subpath: if len(slice_list) > 1: raise ValueError( "Can't slice a dataset with multiple slices without subpath" ) num, ofs = slice_extract_info(slice_list[0], self.shape[0]) return DatasetView( dataset=self, num_samples=num, offset=ofs, squeeze_dim=isinstance(slice_list[0], int), lazy=self.lazy, ) elif not slice_list: if subpath in self._tensors.keys(): tensorview = TensorView( dataset=self, subpath=subpath, slice_=slice(0, self.shape[0]), lazy=self.lazy, ) if self.lazy: return tensorview else: return tensorview.compute() for key in self._tensors.keys(): if subpath.startswith(key): objectview = ObjectView(dataset=self, subpath=subpath, lazy=self.lazy) if self.lazy: return objectview else: return objectview.compute() return self._get_dictionary(subpath) else: num, ofs = slice_extract_info(slice_list[0], self.shape[0]) schema_obj = self.schema.dict_[subpath.split("/")[1]] if subpath in self._tensors.keys() and (not isinstance( schema_obj, Sequence) or len(slice_list) <= 1): tensorview = TensorView(dataset=self, subpath=subpath, slice_=slice_list, lazy=self.lazy) if self.lazy: return tensorview else: return tensorview.compute() for key in self._tensors.keys(): if subpath.startswith(key): objectview = ObjectView( dataset=self, subpath=subpath, slice_list=slice_list, lazy=self.lazy, ) if self.lazy: return objectview else: return objectview.compute() if len(slice_list) > 1: raise ValueError("You can't slice a dictionary of Tensors") return self._get_dictionary(subpath, slice_list[0])