def test_serialize_deserialize():
    t = Tensor(
        shape=(100, 200),
        dtype={
            "image":
            Image(shape=(300, 400, 3), dtype="uint8"),
            "label":
            Tensor(
                shape=(5000, ),
                dtype={
                    "first": {
                        "a": "<U20",
                        "b": "uint32",
                        "c": ClassLabel(num_classes=3),
                    },
                    "second": "float64",
                },
            ),
            "bbox":
            BBox(dtype="float64"),
            "audio":
            Audio(shape=(120, ), dtype="uint32"),
            "mask":
            Mask(shape=(5, 8, 1)),
            "polygon":
            Polygon(shape=(16, 2)),
            "segmentation1":
            Segmentation(shape=(5, 9, 1), dtype="uint8", num_classes=5),
            "segmentation2":
            Segmentation(shape=(5, 9, 1),
                         dtype="uint8",
                         names=("apple", "orange", "pineapple")),
            "sequence":
            Sequence(dtype=Tensor(shape=(None, None),
                                  max_shape=(100, 100),
                                  dtype="uint8"), ),
            "text":
            Text((None, ), max_shape=(10, )),
            "video":
            Video((100, 100, 3, 10)),
        },
    )
    original_result = tuple(t._flatten())
    original_paths = [r.path for r in original_result]
    original_shapes = [r.shape for r in original_result]
    origanal_dtypes = [str(r.dtype) for r in original_result]

    serialize_t = serialize(t)
    deserialize_t = deserialize(serialize_t)
    result = tuple(deserialize_t._flatten())
    paths = [r.path for r in result]
    shapes = [r.shape for r in result]
    dtypes = [str(r.dtype) for r in result]

    assert paths == original_paths
    assert shapes == original_shapes
    assert dtypes == origanal_dtypes
Exemple #2
0
def deserialize(inp):
    if isinstance(inp, dict):
        if inp["type"] == "Audio":
            return Audio(
                shape=tuple(inp["shape"]),
                dtype=deserialize(inp["dtype"]),
                file_format=inp["file_format"],
                sample_rate=inp["sample_rate"],
                max_shape=tuple(inp["max_shape"]),
                chunks=inp["chunks"],
                compressor=_get_compressor(inp),
            )
        elif inp["type"] == "BBox":
            return BBox(
                shape=tuple(inp["shape"]),
                dtype=deserialize(inp["dtype"]),
                chunks=inp["chunks"],
                compressor=_get_compressor(inp),
                max_shape=tuple(inp["max_shape"]),
            )
        elif inp["type"] == "ClassLabel":
            if inp["_names"] is not None:
                return ClassLabel(
                    shape=tuple(inp["shape"]),
                    dtype=deserialize(inp["dtype"]),
                    names=inp["_names"],
                    chunks=inp["chunks"],
                    compressor=_get_compressor(inp),
                    max_shape=tuple(inp["max_shape"]),
                )
            else:
                return ClassLabel(
                    shape=tuple(inp["shape"]),
                    dtype=deserialize(inp["dtype"]),
                    num_classes=inp["_num_classes"],
                    chunks=inp["chunks"],
                    compressor=_get_compressor(inp),
                    max_shape=tuple(inp["max_shape"]),
                )
        elif inp["type"] == "SchemaDict" or inp["type"] == "FeatureDict":
            d = {}
            for k, v in inp["items"].items():
                d[k] = deserialize(v)
            return SchemaDict(d)
        elif inp["type"] == "Image":
            return Image(
                shape=tuple(inp["shape"]),
                dtype=deserialize(inp["dtype"]),
                max_shape=tuple(inp["max_shape"]),
                chunks=inp["chunks"],
                compressor=_get_compressor(inp),
            )
        elif inp["type"] == "Mask":
            return Mask(
                shape=tuple(inp["shape"]),
                max_shape=tuple(inp["max_shape"]),
                chunks=inp["chunks"],
                compressor=_get_compressor(inp),
            )
        elif inp["type"] == "Polygon":
            return Polygon(
                shape=tuple(inp["shape"]),
                max_shape=tuple(inp["max_shape"]),
                dtype=deserialize(inp["dtype"]),
                chunks=inp["chunks"],
                compressor=_get_compressor(inp),
            )
        elif inp["type"] == "Primitive":
            return Primitive(
                dtype=deserialize(inp["dtype"]),
                chunks=inp["chunks"],
                compressor=_get_compressor(inp),
            )
        elif inp["type"] == "Segmentation":
            class_labels = deserialize(inp["class_labels"])
            if class_labels._names is not None:
                return Segmentation(
                    shape=tuple(inp["shape"]),
                    dtype=deserialize(inp["dtype"]),
                    names=class_labels._names,
                    max_shape=tuple(inp["max_shape"]),
                    chunks=inp["chunks"],
                    compressor=_get_compressor(inp),
                )
            else:
                return Segmentation(
                    shape=tuple(inp["shape"]),
                    dtype=deserialize(inp["dtype"]),
                    num_classes=class_labels._num_classes,
                    max_shape=tuple(inp["max_shape"]),
                    chunks=inp["chunks"],
                    compressor=_get_compressor(inp),
                )
        elif inp["type"] == "Sequence":
            return Sequence(
                shape=tuple(inp["shape"]),
                dtype=deserialize(inp["dtype"]),
                max_shape=tuple(inp["max_shape"]),
                chunks=inp["chunks"],
                compressor=_get_compressor(inp),
            )
        elif inp["type"] == "Tensor":
            return Tensor(
                tuple(inp["shape"]),
                deserialize(inp["dtype"]),
                max_shape=tuple(inp["max_shape"]),
                chunks=inp["chunks"],
                compressor=_get_compressor(inp),
            )
        elif inp["type"] == "Text":
            return Text(
                tuple(inp["shape"]),
                deserialize(inp["dtype"]),
                max_shape=tuple(inp["max_shape"]),
                chunks=inp["chunks"],
                compressor=_get_compressor(inp),
            )
        elif inp["type"] == "Video":
            return Video(
                shape=tuple(inp["shape"]),
                dtype=deserialize(inp["dtype"]),
                max_shape=tuple(inp["max_shape"]),
                chunks=inp["chunks"],
                compressor=_get_compressor(inp),
            )
    else:
        return inp
Exemple #3
0
def test_audio_repr():
    audio = Audio((100,))
    text = "Audio(shape=(100,), dtype='int64')"
    assert audio.__repr__() == text
Exemple #4
0
def test_audio():
    with pytest.raises(ValueError):
        audio = Audio((1920, 3), "float32")
Exemple #5
0
def deserialize(inp):
    if isinstance(inp, dict):
        if inp["type"] == "Audio":
            return Audio(
                shape=tuple(inp["shape"]),
                dtype=deserialize(inp["dtype"]),
                file_format=inp["file_format"],
                sample_rate=inp["sample_rate"],
                max_shape=tuple(inp["max_shape"]),
                chunks=inp["chunks"],
                compressor=_get_compressor(inp),
            )
        elif inp["type"] == "BBox":
            return BBox(
                dtype=deserialize(inp["dtype"]),
                chunks=inp["chunks"],
                compressor=_get_compressor(inp),
            )
        elif inp["type"] == "ClassLabel":
            if "_num_classes" in inp.keys():
                return ClassLabel(
                    num_classes=inp["_num_classes"],
                    chunks=inp["chunks"],
                    compressor=_get_compressor(inp),
                )
            else:
                return ClassLabel(
                    names=inp["names"],
                    chunks=inp["chunks"],
                    compressor=_get_compressor(inp),
                )
        elif inp["type"] == "SchemaDict" or inp["type"] == "FeatureDict":
            d = {}
            for k, v in inp["items"].items():
                d[k] = deserialize(v)
            return SchemaDict(d)
        elif inp["type"] == "Image":
            return Image(
                shape=tuple(inp["shape"]),
                dtype=deserialize(inp["dtype"]),
                # TODO uncomment back when image encoding will be added
                # encoding_format=inp["encoding_format"],
                max_shape=tuple(inp["max_shape"]),
                chunks=inp["chunks"],
                compressor=_get_compressor(inp),
            )
        elif inp["type"] == "Mask":
            return Mask(
                shape=tuple(inp["shape"]),
                max_shape=tuple(inp["max_shape"]),
                chunks=inp["chunks"],
                compressor=_get_compressor(inp),
            )
        elif inp["type"] == "Polygon":
            return Polygon(
                shape=tuple(inp["shape"]),
                max_shape=tuple(inp["max_shape"]),
                dtype=deserialize(inp["dtype"]),
                chunks=inp["chunks"],
                compressor=_get_compressor(inp),
            )
        elif inp["type"] == "Segmentation":
            class_labels = deserialize(inp["class_labels"])
            if hasattr(class_labels, "_num_classes"):
                return Segmentation(
                    shape=tuple(inp["shape"]),
                    dtype=deserialize(inp["dtype"]),
                    num_classes=class_labels._num_classes,
                    max_shape=tuple(inp["max_shape"]),
                    chunks=inp["chunks"],
                    compressor=_get_compressor(inp),
                )
            else:
                return Segmentation(
                    shape=tuple(inp["shape"]),
                    dtype=deserialize(inp["dtype"]),
                    names=class_labels.names,
                    max_shape=tuple(inp["max_shape"]),
                    chunks=inp["chunks"],
                    compressor=_get_compressor(inp),
                )
        elif inp["type"] == "Sequence":
            return Sequence(
                shape=tuple(inp["shape"]),
                dtype=deserialize(inp["dtype"]),
                max_shape=tuple(inp["max_shape"]),
                chunks=inp["chunks"],
                compressor=_get_compressor(inp),
            )
        elif inp["type"] == "Tensor":
            return Tensor(
                tuple(inp["shape"]),
                deserialize(inp["dtype"]),
                max_shape=tuple(inp["max_shape"]),
                chunks=inp["chunks"],
                compressor=_get_compressor(inp),
            )
        elif inp["type"] == "Text":
            return Text(
                tuple(inp["shape"]),
                deserialize(inp["dtype"]),
                max_shape=tuple(inp["max_shape"]),
                chunks=inp["chunks"],
                compressor=_get_compressor(inp),
            )
        elif inp["type"] == "Video":
            return Video(
                shape=tuple(inp["shape"]),
                dtype=deserialize(inp["dtype"]),
                # TODO uncomment back when image encoding will be added
                # encoding_format=inp["encoding_format"],
                max_shape=tuple(inp["max_shape"]),
                chunks=inp["chunks"],
                compressor=_get_compressor(inp),
            )
    else:
        return inp