Exemple #1
0
 def load(fname, verbose=0):
     data = utils.parse_hvsrpy_output(fname)
     std_curve = np.log(data["upper"]) - np.log(data["curve"])
     clarity = utils.sesame_clarity(data["frequency"],
                                    data["curve"],
                                    std_curve,
                                    data["std_f0"],
                                    verbose=verbose)
     reliability = utils.sesame_reliability(data["windowlength"],
                                            data["accepted_windows"],
                                            data["frequency"],
                                            data["curve"],
                                            std_curve,
                                            verbose=verbose)
     return (reliability, clarity)
Exemple #2
0
    def test_sesame_with_limits(self):
        frequency = np.array([0.3, 0.4, 0.5, 0.6, 0.9, 1, 1.1, 1.2, 1.3])
        mean_curve = np.array([1, 3, 1, 1, 1, 1, 1, 3, 1])
        std_curve = np.ones(9) * 0.2
        f0_std = 0.07

        # reliability
        expecteds = [3, 3]
        settings = [(0.3, 0.5), (0.9, 1.3)]

        for expected, limits in zip(expecteds, settings):
            with open(os.devnull, "w") as sys.stdout:
                returned = np.sum(
                    utils.sesame_reliability(60,
                                             10,
                                             frequency,
                                             mean_curve,
                                             std_curve,
                                             search_limits=limits,
                                             verbose=2))
                sys.stdout = sys.__stdout__
            self.assertEqual(expected, returned)

        # clarity
        expecteds = [6, 6]
        settings = [(0.3, 0.5), (0.9, 1.3)]

        for expected, limits in zip(expecteds, settings):
            with open(os.devnull, "w") as sys.stdout:
                returned = np.sum(
                    utils.sesame_clarity(frequency,
                                         mean_curve,
                                         std_curve,
                                         f0_std,
                                         search_limits=limits,
                                         verbose=2))
                sys.stdout = sys.__stdout__
            self.assertEqual(expected, returned)
Exemple #3
0
    def test_sesame_by_condition(self):
        # Defaults
        frequency = np.array([0.7, 0.8, 0.9, 1, 1.1])
        mean_curve = np.array([1, 1, 2.1, 1, 1])
        std_curve = np.array([0.2, 0.2, 0.2, 0.2, 0.2])
        f0_std = 0.1

        # Condition 1: there exists an f in [f0/4, f0] where A(f) < A(f0)/2
        frequency = np.array([0.2, 0.4, 0.7, 1, 1.5])
        potential_curves = [(1, np.array([1.0, 1.0, 1.0, 3.0, 1.0])),
                            (0, np.array([2.9, 2.9, 2.9, 3.0, 1.0])),
                            (0, np.array([1.6, 2.0, 2.9, 3.0, 1.0])),
                            (1, np.array([1.4, 1.4, 2.0, 3.0, 1.0])),
                            (0, np.array([1.5, 1.5, 2.9, 3.0, 1.0]))]

        for expected, mean_curve in potential_curves:
            returned = utils.sesame_clarity(frequency,
                                            mean_curve,
                                            std_curve,
                                            f0_std,
                                            verbose=0)[0]
            self.assertEqual(expected, returned)

        # Condition 2: there exists an f in [f0, 4f0] where A(f) < A(f0)/2
        frequency = np.array([0.7, 1, 2.5, 3.5, 5])
        potential_curves = [(1, np.array([1.0, 3.0, 1.0, 1.0, 1.0])),
                            (0, np.array([1.0, 3.0, 2.9, 2.9, 2.9])),
                            (0, np.array([1.0, 3.0, 2.9, 2.0, 1.6])),
                            (1, np.array([1.0, 3.0, 2.0, 1.4, 1.4])),
                            (0, np.array([1.0, 3.0, 2.9, 1.5, 1.5]))]

        for expected, mean_curve in potential_curves:
            returned = utils.sesame_clarity(frequency,
                                            mean_curve,
                                            std_curve,
                                            f0_std,
                                            verbose=0)[1]
            self.assertEqual(expected, returned)

        # Condition 3: A0>2
        potential_curves = [(0, np.array([1.0, 1.0, 1.1, 1.0, 1.0])),
                            (0, np.array([1.0, 2.0, 1.0, 1.0, 1.0])),
                            (0, np.array([1.0, 1.0, 1.0, 1.2, 1.0])),
                            (1, np.array([1.0, 3.0, 2.0, 1.4, 1.4])),
                            (1, np.array([1.0, 5.0, 2.9, 1.5, 1.5])),
                            (1, np.array([1.0, 3.0, 2.9, 7.5, 1.5]))]
        for expected, mean_curve in potential_curves:
            returned = utils.sesame_clarity(frequency,
                                            mean_curve,
                                            std_curve,
                                            f0_std,
                                            verbose=0)[2]
            self.assertEqual(expected, returned)

        # Condition 4: fpeak[Ahv(f) +/- sigma_a(f)] = f0 +/- 5%
        frequency = np.array([0.90, 0.94, 0.96, 1, 1.04, 1.06, 1.1])

        mean_curves = [
            np.array([1.0, 1.0, 1.0, 2.0, 1.0, 1.0, 1.0]),
            np.array([1.0, 1.0, 1.0, 2.0, 1.0, 1.0, 1.0]),
            np.array([1.0, 1.0, 2.0, 1.0, 1.0, 1.0, 1.0]),
            np.array([1.0, 1.0, 1.0, 1.0, 2.0, 1.0, 1.0]),
            np.array([1.0, 1.0, 1.0, 2.0, 1.0, 1.0, 1.0]),
            np.array([1.0, 1.0, 1.0, 2.0, 1.0, 1.0, 1.0]),
            np.array([1.0, 1.0, 1.0, 2.0, 1.0, 1.0, 1.0])
        ]

        uppers = [
            np.array([1.0, 1.1, 1.0, 1.0, 1.0, 1.0, 1.0]) + 0.1,
            np.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.1, 1.0]) + 0.1,
            np.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.1, 1.0]) + 0.1,
            np.array([1.0, 1.1, 1.0, 1.0, 1.0, 1.0, 1.0]) + 0.1,
            np.array([1.0, 1.0, 1.0, 2.1, 1.0, 1.0, 1.0]) + 0.1,
            np.array([1.0, 1.0, 1.1, 1.0, 1.0, 1.0, 1.0]) + 0.1,
            np.array([1.0, 1.0, 1.0, 1.0, 1.1, 1.0, 1.0]) + 0.1
        ]

        rating = [0, 0, 0, 0, 1, 1, 1]

        for expected, upper, mean_curve in zip(rating, uppers, mean_curves):
            std_curve = np.log(upper) - np.log(mean_curve)
            curve = np.exp(np.log(mean_curve) + std_curve)
            self.assertArrayEqual(upper, curve)
            returned = utils.sesame_clarity(frequency,
                                            mean_curve,
                                            std_curve,
                                            f0_std,
                                            verbose=0)[3]
            self.assertEqual(expected, returned)

        # Condition 5: f0_std < epsilon(f0)
        frequency = np.array([0.05, 0.1, 0.35, 0.75, 1.5, 3, 5])
        factors = [0.25, 0.2, 0.15, 0.1, 0.05]

        for peak_frequency, factor in zip(frequency[1:-1], factors):
            mean_curve = np.ones_like(frequency)
            mean_curve[peak_frequency == frequency] = 2
            std_curve = 0.1 * mean_curve
            for adjust, expected in zip([0.9, 1.1], [1, 0]):
                f0_std = factor * peak_frequency * adjust
                returned = utils.sesame_clarity(frequency,
                                                mean_curve,
                                                std_curve,
                                                f0_std,
                                                verbose=0)[4]
                self.assertEqual(expected, returned)

        # Condition 6: sigma_a(f0) < theta(f0)
        frequency = np.array([0.05, 0.1, 0.35, 0.75, 1.5, 3, 5])
        factors = [3.0, 2.5, 2.0, 1.78, 1.58]

        for peak_frequency, factor in zip(frequency[1:-1], factors):
            mean_curve = np.ones_like(frequency)
            mean_curve[peak_frequency == frequency] = 2
            for adjust, expected in zip([0.9, 1.1], [1, 0]):
                sigma_a = np.ones_like(frequency) * adjust * factor
                upper = mean_curve * sigma_a
                std_curve = np.log(upper) - np.log(mean_curve)
                curve = np.exp(np.log(mean_curve) + std_curve)
                self.assertArrayAlmostEqual(upper, curve, places=6)
                f0_std = factor * peak_frequency * adjust
                returned = utils.sesame_clarity(frequency,
                                                mean_curve,
                                                std_curve,
                                                f0_std,
                                                verbose=0)[5]
                self.assertEqual(expected, returned)