Exemple #1
0
    def _stats(self, distribution_f0):
        distribution_f0 = Hvsr.correct_distribution(distribution_f0)

        if distribution_f0 == "lognormal":
            columns = ["Lognormal Median", "Lognormal Standard Deviation"]
            data = np.array([[
                self.mean_f0_frq(distribution_f0),
                self.std_f0_frq(distribution_f0)
            ],
                             [
                                 1 / self.mean_f0_frq(distribution_f0),
                                 self.std_f0_frq(distribution_f0)
                             ]])

        elif distribution_f0 == "normal":
            columns = ["Means", "Standard Deviation"]
            data = np.array([[
                self.mean_f0_frq(distribution_f0),
                self.std_f0_frq(distribution_f0)
            ], [np.nan, np.nan]])
        else:
            msg = f"`distribution_f0` of {distribution_f0} is not implemented."
            raise NotImplementedError(msg)

        df = DataFrame(data=data,
                       columns=columns,
                       index=[
                           "Fundamental Site Frequency, f0,AZ",
                           "Fundamental Site Period, T0,AZ"
                       ])
        return df
Exemple #2
0
 def _mean_factory(distribution, values, **kwargs):
     distribution = Hvsr.correct_distribution(distribution)
     if distribution == "normal":
         mean = np.mean([np.mean(x, **kwargs) for x in values], **kwargs)
         return mean
     elif distribution == "lognormal":
         mean = np.mean([np.mean(np.log(x), **kwargs) for x in values],
                        **kwargs)
         return np.exp(mean)
     else:
         msg = f"distribution type {distribution} not recognized."
         raise NotImplementedError(msg)
Exemple #3
0
    def _std_factory(distribution, values, **kwargs):
        distribution = Hvsr.correct_distribution(distribution)
        n = len(values)
        mean = HvsrRotated._mean_factory(distribution, values, **kwargs)
        num = 0
        wi2 = 0

        if distribution == "normal":
            def _diff(value, mean):
                return value - mean
        elif distribution == "lognormal":
            def _diff(value, mean):
                return np.log(value) - np.log(mean)

        for value in values:
            i = len(value)
            diff = _diff(value, mean)
            wi = 1/(n*i)
            num += np.sum(diff*diff*wi, **kwargs)
            wi2 += wi*wi*i

        return np.sqrt(num/(1-wi2))
Exemple #4
0
    def _hvsrpy_style_lines(self, distribution_f0, distribution_mc):
        """Lines for hvsrpy-style file."""
        # Correct distribution
        distribution_f0 = Hvsr.correct_distribution(distribution_f0)
        distribution_mc = Hvsr.correct_distribution(distribution_mc)

        # `f0` from windows
        mean_f = self.mean_f0_frq(distribution_f0)
        sigm_f = self.std_f0_frq(distribution_f0)
        ci_68_lower_f = self.nstd_f0_frq(-1, distribution_f0)
        ci_68_upper_f = self.nstd_f0_frq(+1, distribution_f0)

        # mean curve
        mc = self.mean_curve(distribution_mc)
        mc_peak_frq = self.mc_peak_frq(distribution_mc)
        mc_peak_amp = self.mc_peak_amp(distribution_mc)
        _min = self.nstd_curve(-1, distribution_mc)
        _max = self.nstd_curve(+1, distribution_mc)

        rejection = "False" if self.meta.get(
            'Performed Rejection') is None else "True"

        nseries = self.hvsrs[0].nseries
        n_accepted = sum(
            [sum(hvsr.valid_window_indices) for hvsr in self.hvsrs])
        n_rejected = self.azimuth_count * nseries - n_accepted
        lines = [
            f"# hvsrpy output version {__version__}",
            f"# File Name (),{self.meta.get('File Name')}",
            f"# Window Length (s),{self.meta.get('Window Length')}",
            f"# Total Number of Windows per Azimuth (),{nseries}",
            f"# Total Number of Azimuths (),{self.azimuth_count}",
            f"# Frequency Domain Window Rejection Performed (),{rejection}",
            f"# Lower frequency limit for peaks (Hz),{self.hvsrs[0].f_low}",
            f"# Upper frequency limit for peaks (Hz),{self.hvsrs[0].f_high}",
            f"# Number of Standard Deviations Used for Rejection () [n],{self.meta.get('n')}",
            f"# Number of Accepted Windows (),{n_accepted}",
            f"# Number of Rejected Windows (),{n_rejected}",
            f"# Distribution of f0 (),{distribution_f0}"
        ]

        def fclean(number, decimals=4):
            return np.round(number, decimals=decimals)

        if distribution_f0 == "lognormal":
            mean_t = 1 / mean_f
            sigm_t = sigm_f
            ci_68_lower_t = np.exp(np.log(mean_t) - sigm_t)
            ci_68_upper_t = np.exp(np.log(mean_t) + sigm_t)

            lines += [
                f"# Median f0 (Hz) [LMf0AZ],{fclean(mean_f)}",
                f"# Lognormal standard deviation f0 () [SigmaLNf0AZ],{fclean(sigm_f)}",
                f"# 68 % Confidence Interval f0 (Hz),{fclean(ci_68_lower_f)},to,{fclean(ci_68_upper_f)}",
                f"# Median T0 (s) [LMT0AZ],{fclean(mean_t)}",
                f"# Lognormal standard deviation T0 () [SigmaLNT0AZ],{fclean(sigm_t)}",
                f"# 68 % Confidence Interval T0 (s),{fclean(ci_68_lower_t)},to,{fclean(ci_68_upper_t)}",
            ]

        else:
            lines += [
                f"# Mean f0 (Hz) [f0AZ],{fclean(mean_f)}",
                f"# Standard deviation f0 (Hz) [Sigmaf0AZ],{fclean(sigm_f)}",
                f"# 68 % Confidence Interval f0 (Hz),{fclean(ci_68_lower_f)},to,{fclean(ci_68_upper_f)}",
                f"# Mean T0 (s) [LMT0AZ],NAN",
                f"# Standard deviation T0 () [SigmaT0AZ],NAN",
                f"# 68 % Confidence Interval T0 (s),NAN",
            ]

        c_type = "Median" if distribution_mc == "lognormal" else "Mean"
        lines += [
            f"# {c_type} Curve Distribution (),{distribution_mc}",
            f"# {c_type} Curve Peak Frequency (Hz) [f0mcAZ],{fclean(mc_peak_frq)}",
            f"# {c_type} Curve Peak Amplitude (),{fclean(mc_peak_amp)}",
            f"# Frequency (Hz),{c_type} Curve,1 STD Below {c_type} Curve,1 STD Above {c_type} Curve",
        ]

        _lines = []
        for line in lines:
            _lines.append(line + "\n")

        for f_i, mean_i, bel_i, abv_i in zip(fclean(self.frq), fclean(mc),
                                             fclean(_min), fclean(_max)):
            _lines.append(f"{f_i},{mean_i},{bel_i},{abv_i}\n")

        return _lines