Exemple #1
0
def hypothesisTest(sensor1, sensor2, vari):
    TD, WS1, CwS, HwS, Temp1, GTemp, WC, RH, HSI, DP, PWBTemp, SP, BP, Alt, DAlt, NAWBTemp, WBGT, TWL, MD = readdata(
        sensor1)
    TD, WS2, CwS, HwS, Temp2, GTemp, WC, RH, HSI, DP, PWBTemp, SP, BP, Alt, DAlt, NAWBTemp, WBGT, TWL, MD = readdata(
        sensor2)

    if vari == 'T':
        A = Temp1
        B = Temp2
    elif vari == 'WS':
        A = WS1
        B = WS2

    t, p = stats.ttest_ind(A, B)
    t = abs(t)

    if vari == 'T':
        print('t(Temperature) =', t)
        print('p-value(Temperature) =', p)
    elif vari == 'WS':
        print('t(Wind speed) =', t)
        print('p-value(Wind speed) =', p)
Exemple #2
0
def plotScatter(A,B,C,D,E,vari):
    TD, WS, CwSA, HwSA, TempA, GTemp, WC, RH, HSI, DP, PWBTempA, SP, BP, Alt, DAlt, NAWBTemp, WBGTA, TWL, MD = readdata(A)
    TD, WS, CwSB, HwSB, TempB, GTemp, WC, RH, HSI, DP, PWBTempB, SP, BP, Alt, DAlt, NAWBTemp, WBGTB, TWL, MD = readdata(B)
    TD, WS, CwSC, HwSC, TempC, GTemp, WC, RH, HSI, DP, PWBTempC, SP, BP, Alt, DAlt, NAWBTemp, WBGTC, TWL, MD = readdata(C)
    TD, WS, CwSD, HwSD, TempD, GTemp, WC, RH, HSI, DP, PWBTempD, SP, BP, Alt, DAlt, NAWBTemp, WBGTD, TWL, MD = readdata(D)
    TD, WS, CwSE, HwSE, TempE, GTemp, WC, RH, HSI, DP, PWBTempE, SP, BP, Alt, DAlt, NAWBTemp, WBGTE, TWL, MD = readdata(E)
    
    if vari == 'T':
        D = [TempA,TempB,TempC,TempD,TempE]
    elif vari == 'WBGT':
        D = [WBGTA,WBGTB,WBGTC,WBGTD,WBGTE]
    elif vari == 'CwS':
        D = [CwSA,CwSB,CwSC,CwSD,CwSD,CwSE]

    fig = plt.figure(figsize=(14,5))
    ax1 = plt.subplot(251)
    ax2 = plt.subplot(252)
    ax3 = plt.subplot(253)
    ax4 = plt.subplot(254)
    ax5 = plt.subplot(255)
    ax6 = plt.subplot(256)
    ax7 = plt.subplot(257)
    ax8 = plt.subplot(258)
    ax9 = plt.subplot(259)
    ax10 = plt.subplot(2,5,10)
    axes = [ax1,ax2,ax3,ax4,ax5,ax6,ax7,ax8,ax9,ax10]
    X = ['A','B','C','D','E']
    a = 0
    if vari == 'T':
        vname = 'Temperature'
    elif vari == 'WBGT':
        vname = 'WBGT'
    elif vari == 'CwS':
        vname = 'Crosswind Speed'
    #fig.suptitle('Scatter plots of ' + vname + ' values between sensors')
    for i in range(5):
        for j in range(i+1,5):
            dat = pScatter(D[i],D[j])
            axes[a].scatter(dat,D[j],c='b',s=0.2)
            axes[a].set_xlabel(vname + "(Sensor "+X[i]+")")
            axes[a].set_ylabel(vname + "(Sensor " + X[j] + ")")
            a = a+1
    plt.tight_layout()
    plt.show()
Exemple #3
0
def calcCi(A, B, C, D, E, vari):
    TD, WSA, CwS, HwS, TempA, GTemp, WC, RH, HSI, DP, PWBTemp, SP, BP, Alt, DAlt, NAWBTemp, WBGT, TWL, MD = readdata(
        A)
    TD, WSB, CwS, HwS, TempB, GTemp, WC, RH, HSI, DP, PWBTemp, SP, BP, Alt, DAlt, NAWBTemp, WBGT, TWL, MD = readdata(
        B)
    TD, WSC, CwS, HwS, TempC, GTemp, WC, RH, HSI, DP, PWBTemp, SP, BP, Alt, DAlt, NAWBTemp, WBGT, TWL, MD = readdata(
        C)
    TD, WSD, CwS, HwS, TempD, GTemp, WC, RH, HSI, DP, PWBTemp, SP, BP, Alt, DAlt, NAWBTemp, WBGT, TWL, MD = readdata(
        D)
    TD, WSE, CwS, HwS, TempE, GTemp, WC, RH, HSI, DP, PWBTemp, SP, BP, Alt, DAlt, NAWBTemp, WBGT, TWL, MD = readdata(
        E)

    if vari == 'T':
        A = [TempA, TempB, TempC, TempD, TempE]
        print('For Temperature:')
    if vari == 'WS':
        A = [WSA, WSB, WSC, WSD, WSE]
        print('For Windspeed:')
    sensor_list = ['A', 'B', 'C', 'D', 'E']
    lower_list = []
    upper_list = []
    for i in range(5):
        mu, sigma = np.mean(A[i]), np.std(A[i])
        size = len(A[i])
        lower, upper = scipy.stats.t.interval(0.95, size - 1, mu, sigma)
        lower_list.append(lower)
        upper_list.append(upper)
    intervals_list = pd.DataFrame([sensor_list, lower_list,
                                   upper_list]).transpose()
    intervals_list.columns = ['Sensor', 'Lower boundary', 'Upper boundary']
    print(intervals_list)
Exemple #4
0
def showCorrelation(A,B,C,D,E,vari):
    TD, WS, CwSA, HwSA, TempA, GTemp, WC, RH, HSI, DP, PWBTempA, SP, BP, Alt, DAlt, NAWBTemp, WBGTA, TWL, MD = readdata(A)
    TD, WS, CwSB, HwSB, TempB, GTemp, WC, RH, HSI, DP, PWBTempB, SP, BP, Alt, DAlt, NAWBTemp, WBGTB, TWL, MD = readdata(B)
    TD, WS, CwSC, HwSC, TempC, GTemp, WC, RH, HSI, DP, PWBTempC, SP, BP, Alt, DAlt, NAWBTemp, WBGTC, TWL, MD = readdata(C)
    TD, WS, CwSD, HwSD, TempD, GTemp, WC, RH, HSI, DP, PWBTempD, SP, BP, Alt, DAlt, NAWBTemp, WBGTD, TWL, MD = readdata(D)
    TD, WS, CwSE, HwSE, TempE, GTemp, WC, RH, HSI, DP, PWBTempE, SP, BP, Alt, DAlt, NAWBTemp, WBGTE, TWL, MD = readdata(E)
    
    if vari == 'T':
        D = [TempA,TempB,TempC,TempD,TempE]
    elif vari == 'WBGT':
        D = [WBGTA,WBGTB,WBGTC,WBGTD,WBGTE]
    elif vari == 'CwS':
        D = [CwSA,CwSB,CwSC,CwSD,CwSD,CwSE]
    
    a = np.zeros((5,5))
    b = np.zeros((5,5))
    c = np.zeros((5,5))
    d = np.zeros((5,5))
    for i in range(5):
        for j in range(5):
            a[i][j],b[i][j],c[i][j],d[i][j] = calcCorrelation(D[i],D[j])
    if vari == 'T':
        B = 'Temperature'
    elif vari == 'WBGT':
        B = 'Wet Bulb Globe Temperature'
    elif vari == 'CwS':
        B = 'Crosswind Speed'
    print("\nPearson's coefficients for",B)
    print(a)
    print("\nSpearmann's coefficients for",B)
    print(b)
Exemple #5
0
def plotCdf(A, B, C, D, E, vari, n):
    TD, WSA, CwS, HwS, TempA, GTemp, WC, RH, HSI, DP, PWBTemp, SP, BP, Alt, DAlt, NAWBTemp, WBGT, TWL, MD = readdata(
        A)
    TD, WSB, CwS, HwS, TempB, GTemp, WC, RH, HSI, DP, PWBTemp, SP, BP, Alt, DAlt, NAWBTemp, WBGT, TWL, MD = readdata(
        B)
    TD, WSC, CwS, HwS, TempC, GTemp, WC, RH, HSI, DP, PWBTemp, SP, BP, Alt, DAlt, NAWBTemp, WBGT, TWL, MD = readdata(
        C)
    TD, WSD, CwS, HwS, TempD, GTemp, WC, RH, HSI, DP, PWBTemp, SP, BP, Alt, DAlt, NAWBTemp, WBGT, TWL, MD = readdata(
        D)
    TD, WSE, CwS, HwS, TempE, GTemp, WC, RH, HSI, DP, PWBTemp, SP, BP, Alt, DAlt, NAWBTemp, WBGT, TWL, MD = readdata(
        E)

    fig = plt.figure(figsize=(14, 5))
    ax1 = fig.add_subplot(111)
    if vari == 'T':
        a1 = ax1.hist(x=TempA,
                      bins=n,
                      cumulative=1,
                      density=1,
                      color='w',
                      alpha=0.7,
                      rwidth=0.85,
                      histtype='barstacked')
        a2 = ax1.hist(x=TempB,
                      bins=n,
                      cumulative=1,
                      density=1,
                      color='w',
                      alpha=0.7,
                      rwidth=0.85,
                      histtype='barstacked')
        a3 = ax1.hist(x=TempC,
                      bins=n,
                      cumulative=1,
                      density=1,
                      color='w',
                      alpha=0.7,
                      rwidth=0.85,
                      histtype='barstacked')
        a4 = ax1.hist(x=TempD,
                      bins=n,
                      cumulative=1,
                      density=1,
                      color='w',
                      alpha=0.7,
                      rwidth=0.85,
                      histtype='barstacked')
        a5 = ax1.hist(x=TempE,
                      bins=n,
                      cumulative=1,
                      density=1,
                      color='w',
                      alpha=0.7,
                      rwidth=0.85,
                      histtype='barstacked')
    if vari == 'WS':
        a1 = ax1.hist(x=WSA,
                      bins=n,
                      cumulative=1,
                      density=1,
                      color='w',
                      alpha=0.7,
                      rwidth=0.85,
                      histtype='barstacked')
        a2 = ax1.hist(x=WSB,
                      bins=n,
                      cumulative=1,
                      density=1,
                      color='w',
                      alpha=0.7,
                      rwidth=0.85,
                      histtype='barstacked')
        a3 = ax1.hist(x=WSC,
                      bins=n,
                      cumulative=1,
                      density=1,
                      color='w',
                      alpha=0.7,
                      rwidth=0.85,
                      histtype='barstacked')
        a4 = ax1.hist(x=WSD,
                      bins=n,
                      cumulative=1,
                      density=1,
                      color='w',
                      alpha=0.7,
                      rwidth=0.85,
                      histtype='barstacked')
        a5 = ax1.hist(x=WSE,
                      bins=n,
                      cumulative=1,
                      density=1,
                      color='w',
                      alpha=0.7,
                      rwidth=0.85,
                      histtype='barstacked')

    ax1.plot(a1[1][1:] - (a1[1][1:] - a1[1][:-1]) / 2, a1[0], label='Sensor A')
    ax1.plot(a2[1][1:] - (a2[1][1:] - a2[1][:-1]) / 2, a2[0], label='Sensor B')
    ax1.plot(a3[1][1:] - (a3[1][1:] - a3[1][:-1]) / 2, a3[0], label='Sensor C')
    ax1.plot(a4[1][1:] - (a4[1][1:] - a4[1][:-1]) / 2, a4[0], label='Sensor D')
    ax1.plot(a5[1][1:] - (a5[1][1:] - a5[1][:-1]) / 2, a5[0], label='Sensor E')
    plt.ylabel('Cumulative Density')

    if vari == 'T':
        plt.xlabel('Temperature [\N{DEGREE SIGN}C]')
        #plt.title('CDFs for the 5 sensors Temperature values')
    if vari == 'WS':
        plt.xlabel('Windspeed [m/s]')
        #plt.title('CDFs for the 5 sensors Windspeed values')

    plt.legend(loc='best')
    plt.tight_layout()
    plt.show()
Exemple #6
0
def plotWSPdfkde(A, B, C, D, E, n):
    TD, WSA, CwS, HwS, TempA, GTemp, WC, RH, HSI, DP, PWBTemp, SP, BP, Alt, DAlt, NAWBTemp, WBGT, TWL, MD = readdata(
        A)
    TD, WSB, CwS, HwS, TempB, GTemp, WC, RH, HSI, DP, PWBTemp, SP, BP, Alt, DAlt, NAWBTemp, WBGT, TWL, MD = readdata(
        B)
    TD, WSC, CwS, HwS, TempC, GTemp, WC, RH, HSI, DP, PWBTemp, SP, BP, Alt, DAlt, NAWBTemp, WBGT, TWL, MD = readdata(
        C)
    TD, WSD, CwS, HwS, TempD, GTemp, WC, RH, HSI, DP, PWBTemp, SP, BP, Alt, DAlt, NAWBTemp, WBGT, TWL, MD = readdata(
        D)
    TD, WSE, CwS, HwS, TempE, GTemp, WC, RH, HSI, DP, PWBTemp, SP, BP, Alt, DAlt, NAWBTemp, WBGT, TWL, MD = readdata(
        E)

    ax1 = plt.subplot(231)
    ax2 = plt.subplot(232)
    ax3 = plt.subplot(233)
    ax4 = plt.subplot(234)
    ax5 = plt.subplot(235)
    ax1.hist(x=WSA, bins=n, density=True, histtype='step', label='PDF')
    ax1.set_xlabel('Sensor A')
    ax2.hist(x=WSB, bins=n, density=True, histtype='step', label='PDF')
    ax2.set_xlabel('Sensor B')
    ax3.hist(x=WSC, bins=n, density=True, histtype='step', label='PDF')
    ax3.set_xlabel('Sensor C')
    ax4.hist(x=WSD, bins=n, density=True, histtype='step', label='PDF')
    ax4.set_xlabel('Sensor D')
    ax5.hist(x=WSE, bins=n, density=True, histtype='step', label='PDF')
    ax5.set_xlabel('Sensor E')
    sns.kdeplot(WSA, color='springgreen', ax=ax1, label="KDE")
    sns.kdeplot(WSB, color='springgreen', ax=ax2, label="KDE")
    sns.kdeplot(WSC, color='springgreen', ax=ax3, label="KDE")
    sns.kdeplot(WSD, color='springgreen', ax=ax4, label="KDE")
    sns.kdeplot(WSE, color='springgreen', ax=ax5, label="KDE")
    plt.legend(loc='lower left', bbox_to_anchor=(1.5, 0))
    #plt.suptitle('PDFs and the kernel density estimation for the 5 sensors Wind Speed values', )
    plt.subplots_adjust(wspace=0.3)
    plt.subplots_adjust(hspace=0.5)
    plt.show()
Exemple #7
0
def plotPdf(A, B, C, D, E):
    TD, WS, CwS, HwS, TempA, GTemp, WC, RH, HSI, DP, PWBTemp, SP, BP, Alt, DAlt, NAWBTemp, WBGT, TWL, MD = readdata(
        A)
    TD, WS, CwS, HwS, TempB, GTemp, WC, RH, HSI, DP, PWBTemp, SP, BP, Alt, DAlt, NAWBTemp, WBGT, TWL, MD = readdata(
        B)
    TD, WS, CwS, HwS, TempC, GTemp, WC, RH, HSI, DP, PWBTemp, SP, BP, Alt, DAlt, NAWBTemp, WBGT, TWL, MD = readdata(
        C)
    TD, WS, CwS, HwS, TempD, GTemp, WC, RH, HSI, DP, PWBTemp, SP, BP, Alt, DAlt, NAWBTemp, WBGT, TWL, MD = readdata(
        D)
    TD, WS, CwS, HwS, TempE, GTemp, WC, RH, HSI, DP, PWBTemp, SP, BP, Alt, DAlt, NAWBTemp, WBGT, TWL, MD = readdata(
        E)

    mu1, sigma1 = np.mean(TempA), np.std(TempA)
    mu2, sigma2 = np.mean(TempB), np.std(TempB)
    mu3, sigma3 = np.mean(TempC), np.std(TempC)
    mu4, sigma4 = np.mean(TempD), np.std(TempD)
    mu5, sigma5 = np.mean(TempE), np.std(TempE)
    x1 = np.linspace(mu1 - 4 * sigma1, mu1 + 4 * sigma1, 100)
    x2 = np.linspace(mu2 - 4 * sigma2, mu2 + 4 * sigma2, 100)
    x3 = np.linspace(mu3 - 4 * sigma3, mu3 + 4 * sigma3, 100)
    x4 = np.linspace(mu4 - 4 * sigma4, mu4 + 4 * sigma4, 100)
    x5 = np.linspace(mu5 - 4 * sigma5, mu5 + 4 * sigma5, 100)
    plt.figure(figsize=(14, 5))
    plt.plot(x1, stats.norm.pdf(x1, mu1, sigma1), label='Sensor A')
    plt.plot(x2, stats.norm.pdf(x2, mu2, sigma2), label='Sensor B')
    plt.plot(x3, stats.norm.pdf(x3, mu3, sigma3), label='Sensor C')
    plt.plot(x4, stats.norm.pdf(x4, mu4, sigma4), label='Sensor D')
    plt.plot(x5, stats.norm.pdf(x5, mu5, sigma5), label='Sensor E')
    plt.ylabel('Probability Density')
    plt.xlabel('Temperature [\N{DEGREE SIGN}C]')
    #plt.title('PDFs for the 5 sensors Temperature values')
    plt.ylim(ymin=0)
    plt.legend(loc='best')
    plt.show()
Exemple #8
0
def plotPmf(A, B, C, D, E, n):
    TD, WS, CwS, HwS, TempA, GTemp, WC, RH, HSI, DP, PWBTemp, SP, BP, Alt, DAlt, NAWBTemp, WBGT, TWL, MD = readdata(
        A)
    TD, WS, CwS, HwS, TempB, GTemp, WC, RH, HSI, DP, PWBTemp, SP, BP, Alt, DAlt, NAWBTemp, WBGT, TWL, MD = readdata(
        B)
    TD, WS, CwS, HwS, TempC, GTemp, WC, RH, HSI, DP, PWBTemp, SP, BP, Alt, DAlt, NAWBTemp, WBGT, TWL, MD = readdata(
        C)
    TD, WS, CwS, HwS, TempD, GTemp, WC, RH, HSI, DP, PWBTemp, SP, BP, Alt, DAlt, NAWBTemp, WBGT, TWL, MD = readdata(
        D)
    TD, WS, CwS, HwS, TempE, GTemp, WC, RH, HSI, DP, PWBTemp, SP, BP, Alt, DAlt, NAWBTemp, WBGT, TWL, MD = readdata(
        E)

    fig = plt.figure(figsize=(14, 5))
    ax1 = fig.add_subplot(231)
    ax2 = fig.add_subplot(232)
    ax3 = fig.add_subplot(233)
    ax4 = fig.add_subplot(234)
    ax5 = fig.add_subplot(235)
    weights = np.ones_like(TempE) / float(len(TempE))
    ax1.hist(x=TempA, bins=n, density=True, color='b', histtype='step')
    ax1.set_ylabel('Probability')
    ax1.set_xlabel('Temperature [\N{DEGREE SIGN}C]\nSensor A')
    ax2.hist(x=TempB, bins=n, density=True, color='b', histtype='step')
    ax2.set_ylabel('Probability')
    ax2.set_xlabel('Temperature [\N{DEGREE SIGN}C]\nSensor B')
    ax3.hist(x=TempC, bins=n, density=True, color='b', histtype='step')
    ax3.set_ylabel('Probability')
    ax3.set_xlabel('Temperature [\N{DEGREE SIGN}C]\nSensor C')
    ax4.hist(x=TempD, bins=n, density=True, color='b', histtype='step')
    ax4.set_ylabel('Probability')
    ax4.set_xlabel('Temperature [\N{DEGREE SIGN}C]\nSensor D')
    ax5.hist(x=TempE,
             bins=n,
             density=True,
             color='b',
             histtype='step',
             weights=weights)
    ax5.set_ylabel('Probability')
    ax5.set_xlabel('Temperature [\N{DEGREE SIGN}C]\nSensor E')
    #fig.suptitle('PMFs for the 5 sensors Temperature values',)
    plt.subplots_adjust(wspace=0.5)
    plt.subplots_adjust(hspace=0.5)
    plt.show()