def problem10(): train, test = getData() class1 = 3 class2 = 7 for l in [.01, 1.]: X, Y = prepareOneVsOne(train, class1, class2) X_out, Y_out = prepareOneVsOne(test, class1, class2) print 'lambda {} E_in {:} E_out {:}'.format(l, *regression(X, Y, X_out, Y_out, l, 'nonlinear'))
def problem7_9(): train, test = getData() l = 1. class2 = 1 for class1 in range(10): X, Y = prepareOneVsAll(train, class1) X_out, Y_out = prepareOneVsAll(test, class1) print '{} E_in {:} E_out {:}'.format(class1, *regression(X, Y, X_out, Y_out, l)) print '{} E_in {:} E_out {:}'.format(class1, *regression(X, Y, X_out, Y_out, l, 'nonlinear'))
def problem10(): train, test = getData() class1 = 3 class2 = 7 for l in [.01, 1.]: X, Y = prepareOneVsOne(train, class1, class2) X_out, Y_out = prepareOneVsOne(test, class1, class2) print 'lambda {} E_in {:} E_out {:}'.format( l, *regression(X, Y, X_out, Y_out, l, 'nonlinear'))
def problem7_9(): train, test = getData() l = 1. class2 = 1 for class1 in range(10): X, Y = prepareOneVsAll(train, class1) X_out, Y_out = prepareOneVsAll(test, class1) print '{} E_in {:} E_out {:}'.format( class1, *regression(X, Y, X_out, Y_out, l)) print '{} E_in {:} E_out {:}'.format( class1, *regression(X, Y, X_out, Y_out, l, 'nonlinear'))