def __init__(self, uuid, **kwargs): # Call super class init first model.__init__(self, uuid, **kwargs) self._feature_vector_paths = kwargs.get("feature_vectors") self._truth_vector_paths = kwargs.get("truth_vectors") # Handle to storage for model parameters params = self._parameters # Set various bits of meta data, these are defaults and can be changed later params.setMetaData("model_type", u"decision_tree_regressor_model") params.setMetaData("model_desc", u"SciKits Decision Tree Regressor implementation") params.setMetaData("criterion", kwargs.get("criterion")) params.setMetaData("splitter", kwargs.get("splitter")) params.setMetaData("max_features", kwargs.get("max_features")) params.setMetaData("max_depth", kwargs.get("max_depth")) params.setMetaData("min_samples_split", kwargs.get("min_samples_split")) params.setMetaData("min_samples_leaf", kwargs.get("min_samples_leaf")) params.setMetaData("max_weight_fraction_leaf", kwargs.get("max_weight_fraction_leaf")) params.setMetaData("max_leaf_nodes", kwargs.get("max_leaf_nodes")) params.setMetaData("random_state", kwargs.get("random_state")) params.setMetaData("presort", kwargs.get("presort")) # Validation fields # params.addRequiredBinaryFields([ # "lr_coef_json", # "lr_intercept_json"]) # Validator information params.setMetaData("db_views", [])
def __init__(self, uuid, **kwargs): # Call super class init first model.__init__(self, uuid, **kwargs) gamma = kwargs.get("gamma") if (gamma is None): gamma = 0.001 # Handle to storage for model parameters # Set various bits of meta data, these are defaults and can be changed later self._parameters.setMetaData("model_type", u"example_model") self._parameters.setMetaData("model_desc", u"A description of the example_model") self._parameters.setMetaData("gamma", gamma) self._parameters.setMetaData("clf", {}) self._parameters.setMetaData("feature_vectors", []) self._parameters.setMetaData("truth_vectors", [])
def __init__(self, uuid, **kwargs): # Call super class init first model.__init__(self, uuid, **kwargs) self._feature_vector_paths = kwargs.get("feature_vectors") self._truth_vector_paths = kwargs.get("truth_vectors") # Handle to storage for model parameters params = self._parameters # Set various bits of meta data, these are defaults and can be changed later params.setMetaData("model_type", u"gaussian_nb_model") params.setMetaData("model_desc", u"SciKits Gaussian Naive Bayes implementation") # Validator information params.setMetaData("db_views", [])
def __init__(self, uuid, **kwargs): # Call super class init first model.__init__(self, uuid, **kwargs) # Handle to storage for model parameters params = self._parameters # Set various bits of meta data, these are defaults and can be changed later params.setMetaData("model_type", u"multinomial_nb_model") params.setMetaData("model_desc", u"SciKits Multinomial Naive Bayes implementation") params.setMetaData("alpha", kwargs.get("alpha")) params.setMetaData("fit_prior", kwargs.get("fit_prior")) params.setMetaData("class_prior", kwargs.get("class_prior")) # Validator information params.setMetaData("db_views", [])
def __init__(self, uuid, **kwargs): """ Create instance of the db management model Input: kwargs: various parameters """ # Call super class init first model.__init__(self, uuid, **kwargs) # Handle to storage for model parameters params = self._parameters # Set various bits of meta data, these are defaults and can be changed later params.setMetaData("model_type", u"attribute_index") params.setMetaData("model_desc", u"The most awesome attribute_index model ever") params.setMetaData("value_index", {}) params.setMetaData("processed_count", 0) params.setMetaData("count_threshold", 0) attributes_to_index = kwargs.get("attributes_to_index") if attributes_to_index is None: attributes_to_index = [] values_to_index = kwargs.get("values_to_index") if values_to_index is None: values_to_index = [] count_threshold = kwargs.get("count_threshold") if (count_threshold == None): count_threshold = 0 params.setMetaData("attributes_to_index", attributes_to_index) params.setMetaData("values_to_index", values_to_index) params.setMetaData("count_threshold", count_threshold) self._hyperparameter_list.append("attributes_to_index") self._hyperparameter_list.append("values_to_index") self._hyperparameter_list.append("count_threshold")
def __init__(self, uuid, **kwargs): # Call super class init first print "lr_model kwargs " + str(kwargs) model.__init__(self, uuid, **kwargs) self._feature_vector_paths = kwargs.get("feature_vectors") self._truth_vector_paths = kwargs.get("truth_vectors") # Handle to storage for model parameters params = self._parameters # Set various bits of meta data, these are defaults and can be changed later params.setMetaData("model_type", u"logistic_regression_model") params.setMetaData("model_desc", u"SciKits Logistic Regression implementation") params.setMetaData("penalty", kwargs.get("penalty")) params.setMetaData("dual", kwargs.get("dual")) params.setMetaData("C", kwargs.get("C")) params.setMetaData("fit_intercept", kwargs.get("fit_intercept")) params.setMetaData("intercept_scaling", kwargs.get("intercept_scaling")) params.setMetaData("class_weight", kwargs.get("class_weight")) params.setMetaData("max_iter", kwargs.get("max_iter")) params.setMetaData("random_state", kwargs.get("random_state")) params.setMetaData("solver", kwargs.get("solver")) params.setMetaData("tol", kwargs.get("tol")) params.setMetaData("multi_class", kwargs.get("multi_class")) params.setMetaData("verbose", kwargs.get("verbose")) # Validation fields # params.addRequiredBinaryFields([ # "lr_coef_json", # "lr_intercept_json"]) # Validator information params.setMetaData("db_views", [])
def __init__(self, uuid, **kwargs): """ Create instance of the db management model Input: kwargs: various parameters """ # Call super class init first model.__init__(self, uuid, **kwargs) # Handle to storage for model parameters params = self._parameters # Set various bits of meta data, these are defaults and can be changed later params.setMetaData("model_type", u"attribute_count_analysis") params.setMetaData( "model_desc", u"The most awesome attribute_count_analysis model ever") params.setMetaData("attribute_index_name", kwargs.get("attribute_index_name")) params.setMetaData("attribute_index_db_type", kwargs.get("attribute_index_db_type")) params.setMetaData("attribute_index_db_host", kwargs.get("attribute_index_db_host")) params.setMetaData("attribute_index_db_name", kwargs.get("attribute_index_db_name")) antecedent_key_list = kwargs.get("antecedent_key_list") if antecedent_key_list is None: antecedent_key_list = [] antecedent_value_list = kwargs.get("antecedent_value_list") if antecedent_value_list is None: antecedent_value_list = [] consequent_key_list = kwargs.get("consequent_key_list") if consequent_key_list is None: consequent_key_list = [] consequent_value_list = kwargs.get("consequent_value_list") if consequent_value_list is None: consequent_value_list = [] params.setMetaData("antecedent_key_list", antecedent_key_list) params.setMetaData("antecedent_value_list", antecedent_value_list) params.setMetaData("consequent_key_list", consequent_key_list) params.setMetaData("consequent_value_list", consequent_value_list) # report_antecedent_count = kwargs.get("report_antecedent_count") # if (report_antecedent_count==None): # report_antecedent_count = False report_tp = kwargs.get("report_tp") if report_tp is None: report_tp = False report_fp = kwargs.get("report_fp") if report_fp is None: report_fp = False report_fn = kwargs.get("report_fn") if report_fn is None: report_fn = False report_precision = kwargs.get("report_precision") if report_precision is None: report_precision = False report_recall = kwargs.get("report_recall") if report_recall is None: report_recall = False report_f_measure = kwargs.get("report_f_measure") if report_f_measure is None: report_f_measure = False # params.setMetaData("report_antecedent_count", report_antecedent_count) params.setMetaData("report_tp", report_tp) params.setMetaData("report_fp", report_fp) params.setMetaData("report_fn", report_fn) params.setMetaData("report_precision", report_precision) params.setMetaData("report_recall", report_recall) params.setMetaData("report_f_measure", report_f_measure) self._hyperparameter_list.append("attribute_index_name") self._hyperparameter_list.append("attribute_index_db_type") self._hyperparameter_list.append("attribute_index_db_host") self._hyperparameter_list.append("attribute_index_db_name") self._hyperparameter_list.append("antecedent_key_list") self._hyperparameter_list.append("antecedent_value_list") self._hyperparameter_list.append("consequent_key_list") self._hyperparameter_list.append("consequent_value_list") self._hyperparameter_list.append("report_tp") self._hyperparameter_list.append("report_fp") self._hyperparameter_list.append("report_fn") self._hyperparameter_list.append("report_precision") self._hyperparameter_list.append("report_recall") self._hyperparameter_list.append("report_f_measure") params.setMetaData("value_lists", {}) params.setMetaData("tp_lists", {}) params.setMetaData("fp_lists", {}) params.setMetaData("fn_lists", {}) params.setMetaData("stats_dicts", {})