def get_space(cache):
     space = HyperSpace()
     with space.as_default():
         name_prefix = 'test_'
         filters = 64
         in1 = Input(shape=(
             28,
             28,
             1,
         ))
         in2 = Input(shape=(
             28,
             28,
             1,
         ))
         ic1 = InputChoice([in1, in2], 1)([in1, in2])
         or1 = ModuleChoice([
             sepconv5x5(name_prefix, filters),
             sepconv3x3(name_prefix, filters),
             avgpooling3x3(name_prefix, filters),
             maxpooling3x3(name_prefix, filters),
             identity(name_prefix)
         ])(ic1)
         space.set_inputs([in1, in2])
         space.weights_cache = cache
         return space
Exemple #2
0
 def get_space():
     space = HyperSpace()
     with space.as_default():
         id1 = Identity(p1=Choice(['a', 'b']),
                        p2=Int(1, 100),
                        p3=Real(0, 1.0))
     return space
def cnn_search_space(input_shape, output_units, output_activation='softmax', block_num_choices=[2, 3, 4, 5, 6],
                     activation_choices=['relu'], filters_choices=[32, 64], kernel_size_choices=[(1, 1), (3, 3)]):
    space = HyperSpace()
    with space.as_default():
        hp_use_bn = Bool()
        hp_pooling = Choice(list(range(2)))
        hp_filters = Choice(filters_choices)
        hp_kernel_size = Choice(kernel_size_choices)
        hp_fc_units = Choice([1024, 2048, 4096])
        if len(activation_choices) == 1:
            hp_activation = activation_choices[0]
        else:
            hp_activation = Choice(activation_choices)
        hp_bn_act = Choice([seq for seq in itertools.permutations(range(2))])

        input = Input(shape=input_shape)
        blocks = Repeat(
            lambda step: conv_block(
                block_no=step,
                hp_pooling=hp_pooling,
                hp_filters=hp_filters,
                hp_kernel_size=hp_kernel_size,
                hp_use_bn=hp_use_bn,
                hp_activation=hp_activation,
                hp_bn_act=hp_bn_act),
            repeat_times=block_num_choices)(input)
        x = Flatten()(blocks)
        x = Dense(units=hp_fc_units, activation=hp_activation, name='fc1')(x)
        x = Dense(units=hp_fc_units, activation=hp_activation, name='fc2')(x)
        x = Dense(output_units, activation=output_activation, name='predictions')(x)
    return space
Exemple #4
0
def default_dt_space():
    space = HyperSpace()
    with space.as_default():
        p_nets = MultipleChoice([
            'dnn_nets', 'linear', 'cin_nets', 'fm_nets', 'afm_nets',
            'pnn_nets', 'cross_nets', 'cross_dnn_nets', 'dcn_nets',
            'autoint_nets', 'fgcnn_dnn_nets', 'fibi_dnn_nets'
        ],
                                num_chosen_most=3)
        dt_module = DTModuleSpace(
            nets=p_nets,
            auto_categorize=Bool(),
            cat_remain_numeric=Bool(),
            auto_discrete=Bool(),
            apply_gbm_features=Bool(),
            gbm_feature_type=Choice([
                DT_consts.GBM_FEATURE_TYPE_DENSE,
                DT_consts.GBM_FEATURE_TYPE_EMB
            ]),
            embeddings_output_dim=Choice([4, 10, 20]),
            embedding_dropout=Choice([0, 0.1, 0.2, 0.3, 0.4, 0.5]),
            stacking_op=Choice(
                [DT_consts.STACKING_OP_ADD, DT_consts.STACKING_OP_CONCAT]),
            output_use_bias=Bool(),
            apply_class_weight=Bool(),
            earlystopping_patience=Choice([1, 3, 5]))
        dnn = DnnModule()(dt_module)
        fit = DTFit(batch_size=Choice([128, 256]))(dt_module)

    return space
Exemple #5
0
def mini_dt_space():
    space = HyperSpace()
    with space.as_default():
        p_nets = MultipleChoice(['dnn_nets', 'linear', 'fm_nets'],
                                num_chosen_most=2)
        dt_module = DTModuleSpace(nets=p_nets,
                                  auto_categorize=Bool(),
                                  cat_remain_numeric=Bool(),
                                  auto_discrete=Bool(),
                                  apply_gbm_features=Bool(),
                                  gbm_feature_type=Choice([
                                      DT_consts.GBM_FEATURE_TYPE_DENSE,
                                      DT_consts.GBM_FEATURE_TYPE_EMB
                                  ]),
                                  embeddings_output_dim=Choice([4, 10]),
                                  embedding_dropout=Choice([0, 0.5]),
                                  stacking_op=Choice([
                                      DT_consts.STACKING_OP_ADD,
                                      DT_consts.STACKING_OP_CONCAT
                                  ]),
                                  output_use_bias=Bool(),
                                  apply_class_weight=Bool(),
                                  earlystopping_patience=Choice([1, 3, 5]))
        dnn = DnnModule(hidden_units=Choice([100, 200]),
                        reduce_factor=Choice([1, 0.8]),
                        dnn_dropout=Choice([0, 0.3]),
                        use_bn=Bool(),
                        dnn_layers=2,
                        activation='relu')(dt_module)
        fit = DTFit(batch_size=Choice([128, 256]))(dt_module)

    return space
Exemple #6
0
 def get_space():
     space = HyperSpace()
     with space.as_default():
         filters = 64
         in1 = Input(shape=(
             28,
             28,
             1,
         ), dtype='float32')
         conv_node(hp_dict, 'normal', 0, 0, [in1, in1], filters)
         space.set_inputs(in1)
         return space
Exemple #7
0
 def get_space():
     space = HyperSpace()
     with space.as_default():
         filters = 64
         in1 = Input(shape=(
             28,
             28,
             1,
         ))
         conv_layer(hp_dict, 'normal', 0, [in1, in1], filters, 5)
         space.set_inputs(in1)
         return space
Exemple #8
0
def get_space():
    space = HyperSpace()
    with space.as_default():
        p1 = Int(1, 100)
        p2 = Choice(['a', 'b', 'c'])
        p3 = Bool()
        p4 = Real(0.0, 1.0)
        id1 = Identity(p1=p1)
        id2 = Identity(p2=p2)(id1)
        id3 = Identity(p3=p3)(id2)
        id4 = Identity(p4=p4)(id3)
    return space
Exemple #9
0
def enas_micro_search_space(arch='NRNR',
                            input_shape=(28, 28, 1),
                            init_filters=64,
                            node_num=4,
                            data_format=None,
                            classes=10,
                            classification_dropout=0,
                            hp_dict={},
                            use_input_placeholder=True,
                            weights_cache=None):
    space = HyperSpace()
    with space.as_default():
        if use_input_placeholder:
            input = Input(shape=input_shape, name='0_input')
        else:
            input = None
        stem, input = stem_op(input, init_filters, data_format)
        node0 = stem
        node1 = stem
        reduction_no = 0
        normal_no = 0

        for l in arch:
            if l == 'N':
                normal_no += 1
                type = 'normal'
                cell_no = normal_no
                is_reduction = False
            else:
                reduction_no += 1
                type = 'reduction'
                cell_no = reduction_no
                is_reduction = True
            filters = (2**reduction_no) * init_filters

            if is_reduction:
                node0 = FactorizedReduction(
                    filters, f'{normal_no + reduction_no}_{type}_C{cell_no}_0',
                    data_format)(node0)
                node1 = FactorizedReduction(
                    filters, f'{normal_no + reduction_no}_{type}_C{cell_no}_1',
                    data_format)(node1)
            x = conv_layer(hp_dict, f'{normal_no + reduction_no}_{type}',
                           cell_no, [node0, node1], filters, node_num,
                           is_reduction)
            node0 = node1
            node1 = x
        logit = classification(x, classes, classification_dropout, data_format)
        space.set_inputs(input)
        if weights_cache is not None:
            space.weights_cache = weights_cache

    return space
Exemple #10
0
def func_space(func):
    space = HyperSpace()
    with space.as_default():
        params = {
            name: copy.copy(v)
            for name, v in zip(func.__code__.co_varnames, func.__defaults__)
            if isinstance(v, ParameterSpace)
        }
        for _, v in params.items():
            v.attach_to_space(space, v.name)
        input = HyperInput()
        id1 = Identity(**params)(input)
        space.set_outputs([id1])
    return space
Exemple #11
0
 def get_space():
     space = HyperSpace()
     with space.as_default():
         filters = 64
         in1 = Input(shape=(
             28,
             28,
             1,
         ))
         conv = conv_cell(hp_dict, 'normal', 0, 0, 'L', [in1, in1],
                          filters)
         space.set_inputs([in1, in1])
         space.set_outputs(conv)
         return space
Exemple #12
0
def get_space_p_in_p():
    space = HyperSpace()
    with space.as_default():
        p1 = Pipeline(
            [SimpleImputer(name='imputer1'),
             StandardScaler(name='scaler1')],
            name='p1')
        p2 = Pipeline(
            [SimpleImputer(name='imputer2'),
             StandardScaler(name='scaler2')],
            name='p2')
        input = HyperInput(name='input1')
        p3 = Pipeline([p1, p2], name='p3')(input)
        space.set_inputs(input)
    return space
Exemple #13
0
def get_space_num_cat_pipeline_complex(dataframe_mapper_default=False,
                                       lightgbm_fit_kwargs={},
                                       xgb_fit_kwargs={},
                                       catboost_fit_kwargs={}):
    space = HyperSpace()
    with space.as_default():
        input = HyperInput(name='input1')
        p1 = numeric_pipeline_complex()(input)
        p2 = categorical_pipeline_complex()(input)
        # p2 = categorical_pipeline_simple()(input)
        p3 = DataFrameMapper(default=dataframe_mapper_default,
                             input_df=True,
                             df_out=True,
                             df_out_dtype_transforms=[(column_object, 'int')
                                                      ])([p1, p2])

        lightgbm_init_kwargs = {
            'boosting_type': Choice(['gbdt', 'dart', 'goss']),
            'num_leaves': Choice([11, 31, 101, 301, 501]),
            'learning_rate': Real(0.001, 0.1, step=0.005),
            'n_estimators': 100,
            'max_depth': -1,
            'tree_learner': 'data'  # add for dask
            # subsample_for_bin = 200000, objective = None, class_weight = None,
            #  min_split_gain = 0., min_child_weight = 1e-3, min_child_samples = 20,
        }
        lightgbm_est = LightGBMDaskEstimator(task='binary',
                                             fit_kwargs=lightgbm_fit_kwargs,
                                             **lightgbm_init_kwargs)

        xgb_init_kwargs = {
            'tree_method': 'approx'  # add for dask
        }
        xgb_est = XGBoostDaskEstimator(task='binary',
                                       fit_kwargs=xgb_fit_kwargs,
                                       **xgb_init_kwargs)

        # catboost_init_kwargs = {
        #     'silent': True
        # }
        # catboost_est = CatBoostEstimator(task='binary', fit_kwargs=catboost_fit_kwargs, **catboost_init_kwargs)
        # or_est = ModuleChoice([lightgbm_est, xgb_est, catboost_est], name='estimator_options')(p3)

        or_est = ModuleChoice([lightgbm_est, xgb_est],
                              name='estimator_options')(p3)

        space.set_inputs(input)
    return space
Exemple #14
0
def get_space_column_transformer():
    space = HyperSpace()
    with space.as_default():
        input = HyperInput(name='input1')
        p1 = Pipeline(
            [SimpleImputer(name='imputer1'),
             StandardScaler(name='scaler1')],
            columns=['a', 'b', 'c'],
            name='p1')(input)
        p2 = Pipeline(
            [SimpleImputer(name='imputer2'),
             StandardScaler(name='scaler2')],
            columns=['c', 'd'],
            name='p2')(input)
        p3 = ColumnTransformer()([p1, p2])
        space.set_inputs(input)
    return space
Exemple #15
0
    def __call__(self, *args, **kwargs):
        space = HyperSpace()

        with space.as_default():
            hyper_input = HyperInput(name='input1')

            estimators = []
            if self.enable_dt:
                estimators.append(self.dt)
            if self.enable_dtr:
                estimators.append(self.dtr)
            if self.enable_lr:
                estimators.append(self.lr)
            if self.enable_nn:
                estimators.append(self.nn)

            modules = [ModuleSpace(name=f'{e["cls"].__name__}', **e) for e in estimators]
            outputs = ModuleChoice(modules)(hyper_input)
            space.set_inputs(hyper_input)

        return space
Exemple #16
0
def tiny_dt_space(**hyperparams):
    space = HyperSpace()
    with space.as_default():
        dt_module = DTModuleSpace(nets=['dnn_nets'],
                                  auto_categorize=Bool(),
                                  cat_remain_numeric=Bool(),
                                  auto_discrete=False,
                                  apply_gbm_features=False,
                                  stacking_op=Choice([
                                      DT_consts.STACKING_OP_ADD,
                                      DT_consts.STACKING_OP_CONCAT
                                  ]),
                                  output_use_bias=Bool(),
                                  apply_class_weight=Bool(),
                                  earlystopping_patience=Choice([1, 3, 5]))
        dnn = DnnModule(hidden_units=Choice([10, 20]),
                        reduce_factor=1,
                        dnn_dropout=Choice([0, 0.3]),
                        use_bn=False,
                        dnn_layers=2,
                        activation='relu')(dt_module)
        fit = DTFit(**hyperparams)(dt_module)

    return space
 def get_space():
     space = HyperSpace()
     with space.as_default():
         id1 = Identity(p1=Int(0, 10), p2=Choice(['a', 'b']))
         id2 = Identity(p3=Real(0., 1.), p4=Bool())(id1)
     return space
Exemple #18
0
def get_space_2outputs():
    space = HyperSpace()
    with space.as_default():
        Pipeline([tow_outputs()])
    return space
Exemple #19
0
def get_space_2inputs():
    space = HyperSpace()
    with space.as_default():
        Pipeline([tow_inputs(), StandardScaler()])
    return space
Exemple #20
0
def get_space():
    space = HyperSpace()
    with space.as_default():
        Pipeline([SimpleImputer(), StandardScaler()])
    return space