def test_acq_optimizer_with_time_api(base_estimator, acq_func):
    # TODO: Refactor - Use PyTest
    opt = Optimizer(
        [(-2.0, 2.0)],
        base_estimator=base_estimator,
        acq_func=acq_func,
        acq_optimizer="sampling",
        n_initial_points=2,
    )
    x1 = opt.ask()
    opt.tell(x1, (bench1(x1), 1.0))
    x2 = opt.ask()
    res = opt.tell(x2, (bench1(x2), 2.0))

    # `x1` and `x2` are random.
    assert x1 != x2

    assert len(res.models) == 1
    assert_array_equal(res.func_vals.shape, (2,))
    assert_array_equal(res.log_time.shape, (2,))

    # x3 = opt.ask()
    # TODO: Refactor - Split into separate error test
    with pytest.raises(TypeError):
        opt.tell(x2, bench1(x2))
Exemple #2
0
def test_purely_categorical_space():
    # TODO: Refactor - Use PyTest
    # Test reproduces the bug in #908, make sure it doesn't come back
    dims = [Categorical(["a", "b", "c"]), Categorical(["A", "B", "C"])]
    optimizer = Optimizer(dims, n_initial_points=1, random_state=3)

    x = optimizer.ask()
    # Before the fix this call raised an exception
    optimizer.tell(x, 1.0)
Exemple #3
0
def test_exhaust_initial_calls(base_estimator):
    """Check that a model is fitted and used to make suggestions after adding at least
    `n_initial_points` via `tell`"""
    # TODO: Refactor - Use PyTest

    opt = Optimizer([(-2.0, 2.0)],
                    base_estimator,
                    n_initial_points=2,
                    acq_optimizer="sampling",
                    random_state=1)

    # Until surrogate model in `Optimizer` has been fitted (after `tell`-ing `n_initial_points`),
    #   `ask` returns random points, which is why `x0` and `x1` must be different
    x0 = opt.ask()  # Random point
    x1 = opt.ask()  # Random point
    assert x0 != x1

    #################### First `tell` Call ####################
    # `tell` with a dummy objective value
    r1 = opt.tell(x1, 3.0)
    assert len(r1.models) == 0
    # Surrogate model still not fitted because only 1 / `n_initial_points` has been `tell`-ed
    x2 = opt.ask()  # Random point
    assert x1 != x2

    #################### Second `tell` Call ####################
    r2 = opt.tell(x2, 4.0)
    # After `tell`-ing a second point, a surrogate model is fitted - Unless using "dummy" estimator
    if base_estimator.lower() == "dummy":
        assert len(r2.models) == 0
    else:
        assert len(r2.models) == 1

    #################### First Non-Random Point ####################
    x3 = opt.ask()
    assert x2 != x3
    x4 = opt.ask()
    r3 = opt.tell(x3, 1.0)

    # No new information was added, so should be the same, unless we are using the dummy estimator,
    #   which will forever return random points and never fits any models
    if base_estimator.lower() == "dummy":
        assert x3 != x4
        assert len(r3.models) == 0
    else:
        assert x3 == x4
        assert len(r3.models) == 2
def test_returns_result_object():
    # TODO: Refactor - Use PyTest
    base_estimator = ExtraTreesRegressor(random_state=2)
    opt = Optimizer([(-2.0, 2.0)], base_estimator, n_initial_points=1, acq_optimizer="sampling")
    result = opt.tell([1.5], 2.0)

    assert isinstance(result, OptimizeResult)
    assert len(result.x_iters) == len(result.func_vals)
    assert np.min(result.func_vals) == result.fun
def test_warn_on_re_ask(base_estimator, next_x):
    """Test that `Optimizer.warn_on_re_ask` logs warning when `Optimizer._ask` suggests a point
    that has already been `tell`-ed to `Optimizer`

    Notes
    -----
    "DUMMY"/"dummy" is invalid for `base_estimator` here because it always suggests random points"""
    # Initialize `Optimizer` and `tell` it about `next_x`
    opt = Optimizer(
        [(-2.0, 2.0)], base_estimator, n_initial_points=1, random_state=1, warn_on_re_ask=True
    )
    opt.tell(next_x, 1.0)

    # Force `Optimizer._next_x` (set by `Optimizer._tell`) to the point we just told it
    opt._next_x = next_x

    with pytest.warns(UserWarning, match="Repeated suggestion: .*"):
        opt.ask()