def test_function(): g = Doniach() g.centre.value = 1 g.sigma.value = 2 / sigma2fwhm g.A.value = 3 * sqrt2pi * g.sigma.value g.alpha.value = 1.0e-7 assert_allclose(g.function(2), 3.151281311482424) assert_allclose(g.function(1), 7.519884823893001)
def test_estimate_parameters_binned(only_current, binned, lazy, uniform): s = Signal1D(np.empty((200,))) s.axes_manager.signal_axes[0].is_binned = binned axis = s.axes_manager.signal_axes[0] axis.scale = .05 axis.offset = -5 g1 = Doniach(centre=1, A=5, sigma=1, alpha=0.5) s.data = g1.function(axis.axis) if not uniform: axis.convert_to_non_uniform_axis() if lazy: s = s.as_lazy() g2 = Doniach() if binned and uniform: factor = axis.scale elif binned: factor = np.gradient(axis.axis) else: factor = 1 assert g2.estimate_parameters(s, axis.low_value, axis.high_value, only_current=only_current) assert g2._axes_manager[-1].is_binned == binned np.testing.assert_allclose(g2.sigma.value, 2.331764, 0.01) np.testing.assert_allclose(g1.A.value, g2.A.value * factor, 0.3) np.testing.assert_allclose(g2.centre.value, -0.4791825)
def test_estimate_parameters_binned(only_current, binned, lazy): s = Signal1D(np.empty((200, ))) s.metadata.Signal.binned = binned axis = s.axes_manager.signal_axes[0] axis.scale = .05 axis.offset = -5 g1 = Doniach(centre=1, A=5, sigma=1, alpha=0.5) s.data = g1.function(axis.axis) if lazy: s = s.as_lazy() g2 = Doniach() factor = axis.scale if binned else 1 assert g2.estimate_parameters(s, axis.low_value, axis.high_value, only_current=only_current) assert g2.binned == binned np.testing.assert_allclose(g2.sigma.value, 2.331764, 0.01) np.testing.assert_allclose(g1.A.value, g2.A.value * factor, 0.3) np.testing.assert_allclose(g2.centre.value, -0.4791825)