Exemple #1
0
    def decomposition(self,
                      output_dimension,
                      normalize_poissonian_noise=False,
                      algorithm='PCA',
                      signal_mask=None,
                      navigation_mask=None,
                      get=threaded.get,
                      num_chunks=None,
                      reproject=True,
                      bounds=True,
                      **kwargs):
        """Perform Incremental (Batch) decomposition on the data, keeping n
        significant components.

        Parameters
        ----------
        output_dimension : int
            the number of significant components to keep
        normalize_poissonian_noise : bool
            If True, scale the SI to normalize Poissonian noise
        algorithm : str
            One of ('PCA', 'ORPCA', 'ONMF'). By default ('PCA') IncrementalPCA
            from scikit-learn is run.
        get : dask scheduler
            the dask scheduler to use for computations;
            default `dask.threaded.get`
        num_chunks : int
            the number of dask chunks to pass to the decomposition model.
            More chunks require more memory, but should run faster. Will be
            increased to contain atleast output_dimension signals.
        navigation_mask : {BaseSignal, numpy array, dask array}
            The navigation locations marked as True are not used in the
            decompostion.
        signal_mask : {BaseSignal, numpy array, dask array}
            The signal locations marked as True are not used in the
            decomposition.
        reproject : bool
            Reproject data on the learnt components (factors) after learning.
        bounds : {tuple, bool}
            The (min, max) values of the data to normalize before learning.
            If tuple (min, max), those values will be used for normalization.
            If True, extremes will be looked up (expensive), default.
            If False, no normalization is done (learning may be very slow).
            If normalize_poissonian_noise is True, this cannot be True.
        **kwargs
            passed to the partial_fit/fit functions.

        Notes
        -----
        Various algorithm parameters and their default values:
            ONMF:
                lambda1=1,
                kappa=1,
                robust=False,
                store_r=False
                batch_size=None
            ORPCA:
                fast=True,
                lambda1=None,
                lambda2=None,
                method=None,
                learning_rate=None,
                init=None,
                training_samples=None,
                momentum=None
            PCA:
                batch_size=None,
                copy=True,
                white=False


        """
        explained_variance = None
        explained_variance_ratio = None
        _al_data = self._data_aligned_with_axes
        nav_chunks = _al_data.chunks[:self.axes_manager.navigation_dimension]
        sig_chunks = _al_data.chunks[self.axes_manager.navigation_dimension:]

        num_chunks = 1 if num_chunks is None else num_chunks
        blocksize = np.min([multiply(ar) for ar in product(*nav_chunks)])
        nblocks = multiply([len(c) for c in nav_chunks])
        if blocksize / output_dimension < num_chunks:
            num_chunks = np.ceil(blocksize / output_dimension)
        blocksize *= num_chunks

        # LEARN
        if algorithm == 'PCA':
            from sklearn.decomposition import IncrementalPCA
            obj = IncrementalPCA(n_components=output_dimension)
            method = partial(obj.partial_fit, **kwargs)
            reproject = True

        elif algorithm == 'ORPCA':
            from hyperspy.learn.rpca import ORPCA
            kwg = {'fast': True}
            kwg.update(kwargs)
            obj = ORPCA(output_dimension, **kwg)
            method = partial(obj.fit, iterating=True)

        elif algorithm == 'ONMF':
            from hyperspy.learn.onmf import ONMF
            batch_size = kwargs.pop('batch_size', None)
            obj = ONMF(output_dimension, **kwargs)
            method = partial(obj.fit, batch_size=batch_size)

        else:
            raise ValueError('algorithm not known')

        original_data = self.data
        try:
            if normalize_poissonian_noise:
                if bounds is True:
                    bounds = False
                    # warnings.warn?
                data = self._data_aligned_with_axes
                ndim = self.axes_manager.navigation_dimension
                sdim = self.axes_manager.signal_dimension
                nm = da.logical_not(
                    da.zeros(
                        self.axes_manager.navigation_shape[::-1],
                        chunks=nav_chunks)
                    if navigation_mask is None else to_array(
                        navigation_mask, chunks=nav_chunks))
                sm = da.logical_not(
                    da.zeros(
                        self.axes_manager.signal_shape[::-1],
                        chunks=sig_chunks)
                    if signal_mask is None else to_array(
                        signal_mask, chunks=sig_chunks))
                ndim = self.axes_manager.navigation_dimension
                sdim = self.axes_manager.signal_dimension
                bH, aG = da.compute(
                    data.sum(axis=range(ndim)),
                    data.sum(axis=range(ndim, ndim + sdim)))
                bH = da.where(sm, bH, 1)
                aG = da.where(nm, aG, 1)

                raG = da.sqrt(aG)
                rbH = da.sqrt(bH)

                coeff = raG[(..., ) + (None, ) * rbH.ndim] *\
                    rbH[(None, ) * raG.ndim + (...,)]
                coeff.map_blocks(np.nan_to_num)
                coeff = da.where(coeff == 0, 1, coeff)
                data = data / coeff
                self.data = data

            # normalize the data for learning algs:
            if bounds:
                if bounds is True:
                    _min, _max = da.compute(self.data.min(), self.data.max())
                else:
                    _min, _max = bounds
                self.data = (self.data - _min) / (_max - _min)

            # LEARN
            this_data = []
            try:
                for chunk in progressbar(
                        self._block_iterator(
                            flat_signal=True,
                            get=get,
                            signal_mask=signal_mask,
                            navigation_mask=navigation_mask),
                        total=nblocks,
                        leave=True,
                        desc='Learn'):
                    this_data.append(chunk)
                    if len(this_data) == num_chunks:
                        thedata = np.concatenate(this_data, axis=0)
                        method(thedata)
                        this_data = []
                if len(this_data):
                    thedata = np.concatenate(this_data, axis=0)
                    method(thedata)
            except KeyboardInterrupt:
                pass

            # GET ALREADY CALCULATED RESULTS
            if algorithm == 'PCA':
                explained_variance = obj.explained_variance_
                explained_variance_ratio = obj.explained_variance_ratio_
                factors = obj.components_.T

            elif algorithm == 'ORPCA':
                _, _, U, S, V = obj.finish()
                factors = U * S
                loadings = V
                explained_variance = S**2 / len(factors)

            elif algorithm == 'ONMF':
                factors, loadings = obj.finish()
                loadings = loadings.T

            # REPROJECT
            if reproject:
                if algorithm == 'PCA':
                    method = obj.transform

                    def post(a): return np.concatenate(a, axis=0)
                elif algorithm == 'ORPCA':
                    method = obj.project
                    obj.R = []

                    def post(a): return obj.finish()[4]
                elif algorithm == 'ONMF':
                    method = obj.project

                    def post(a): return np.concatenate(a, axis=1).T

                _map = map(lambda thing: method(thing),
                           self._block_iterator(
                               flat_signal=True,
                               get=get,
                               signal_mask=signal_mask,
                               navigation_mask=navigation_mask))
                H = []
                try:
                    for thing in progressbar(
                            _map, total=nblocks, desc='Project'):
                        H.append(thing)
                except KeyboardInterrupt:
                    pass
                loadings = post(H)

            if explained_variance is not None and \
                    explained_variance_ratio is None:
                explained_variance_ratio = \
                    explained_variance / explained_variance.sum()

            # RESHUFFLE "blocked" LOADINGS
            ndim = self.axes_manager.navigation_dimension
            try:
                loadings = _reshuffle_mixed_blocks(
                    loadings,
                    ndim,
                    (output_dimension,),
                    nav_chunks).reshape((-1, output_dimension))
            except ValueError:
                # In case the projection step was not finished, it's left
                # as scrambled
                pass
        finally:
            self.data = original_data

        target = self.learning_results
        target.decomposition_algorithm = algorithm
        target.output_dimension = output_dimension
        target._object = obj
        target.factors = factors
        target.loadings = loadings
        target.explained_variance = explained_variance
        target.explained_variance_ratio = explained_variance_ratio
Exemple #2
0
    def decomposition(self,
                      normalize_poissonian_noise=False,
                      algorithm='svd',
                      output_dimension=None,
                      signal_mask=None,
                      navigation_mask=None,
                      get=threaded.get,
                      num_chunks=None,
                      reproject=True,
                      bounds=False,
                      **kwargs):
        """Perform Incremental (Batch) decomposition on the data, keeping n
        significant components.

        Parameters
        ----------
        normalize_poissonian_noise : bool
            If True, scale the SI to normalize Poissonian noise
        algorithm : str
            One of ('svd', 'PCA', 'ORPCA', 'ONMF'). By default 'svd',
            lazy SVD decomposition from dask.
        output_dimension : int
            the number of significant components to keep. If None, keep all
            (only valid for SVD)
        get : dask scheduler
            the dask scheduler to use for computations;
            default `dask.threaded.get`
        num_chunks : int
            the number of dask chunks to pass to the decomposition model.
            More chunks require more memory, but should run faster. Will be
            increased to contain atleast output_dimension signals.
        navigation_mask : {BaseSignal, numpy array, dask array}
            The navigation locations marked as True are not used in the
            decompostion.
        signal_mask : {BaseSignal, numpy array, dask array}
            The signal locations marked as True are not used in the
            decomposition.
        reproject : bool
            Reproject data on the learnt components (factors) after learning.
        **kwargs
            passed to the partial_fit/fit functions.

        Notes
        -----
        Various algorithm parameters and their default values:
            ONMF:
                lambda1=1,
                kappa=1,
                robust=False,
                store_r=False
                batch_size=None
            ORPCA:
                fast=True,
                lambda1=None,
                lambda2=None,
                method=None,
                learning_rate=None,
                init=None,
                training_samples=None,
                momentum=None
            PCA:
                batch_size=None,
                copy=True,
                white=False


        """
        if bounds:
            msg = ("The `bounds` keyword is deprecated and will be removed "
                   "in v2.0. Since version > 1.3 this has no effect.")
            warnings.warn(msg, VisibleDeprecationWarning)
        explained_variance = None
        explained_variance_ratio = None
        _al_data = self._data_aligned_with_axes
        nav_chunks = _al_data.chunks[:self.axes_manager.navigation_dimension]
        sig_chunks = _al_data.chunks[self.axes_manager.navigation_dimension:]

        num_chunks = 1 if num_chunks is None else num_chunks
        blocksize = np.min([multiply(ar) for ar in product(*nav_chunks)])
        nblocks = multiply([len(c) for c in nav_chunks])
        if algorithm != "svd" and output_dimension is None:
            raise ValueError("With the %s the output_dimension "
                             "must be specified" % algorithm)
        if output_dimension and blocksize / output_dimension < num_chunks:
            num_chunks = np.ceil(blocksize / output_dimension)
        blocksize *= num_chunks
        # LEARN
        if algorithm == 'PCA':
            from sklearn.decomposition import IncrementalPCA
            obj = IncrementalPCA(n_components=output_dimension)
            method = partial(obj.partial_fit, **kwargs)
            reproject = True

        elif algorithm == 'ORPCA':
            from hyperspy.learn.rpca import ORPCA
            kwg = {'fast': True}
            kwg.update(kwargs)
            obj = ORPCA(output_dimension, **kwg)
            method = partial(obj.fit, iterating=True)

        elif algorithm == 'ONMF':
            from hyperspy.learn.onmf import ONMF
            batch_size = kwargs.pop('batch_size', None)
            obj = ONMF(output_dimension, **kwargs)
            method = partial(obj.fit, batch_size=batch_size)
        elif algorithm != "svd":
            raise ValueError('algorithm not known')

        original_data = self.data
        try:
            if normalize_poissonian_noise:
                data = self._data_aligned_with_axes
                ndim = self.axes_manager.navigation_dimension
                sdim = self.axes_manager.signal_dimension
                nm = da.logical_not(
                    da.zeros(self.axes_manager.navigation_shape[::-1],
                             chunks=nav_chunks) if navigation_mask is None else
                    to_array(navigation_mask, chunks=nav_chunks))
                sm = da.logical_not(
                    da.zeros(self.axes_manager.signal_shape[::-1],
                             chunks=sig_chunks) if signal_mask is None else
                    to_array(signal_mask, chunks=sig_chunks))
                ndim = self.axes_manager.navigation_dimension
                sdim = self.axes_manager.signal_dimension
                bH, aG = da.compute(data.sum(axis=range(ndim)),
                                    data.sum(axis=range(ndim, ndim + sdim)))
                bH = da.where(sm, bH, 1)
                aG = da.where(nm, aG, 1)

                raG = da.sqrt(aG)
                rbH = da.sqrt(bH)

                coeff = raG[(..., ) + (None, ) * rbH.ndim] *\
                    rbH[(None, ) * raG.ndim + (...,)]
                coeff.map_blocks(np.nan_to_num)
                coeff = da.where(coeff == 0, 1, coeff)
                data = data / coeff
                self.data = data

            # LEARN
            if algorithm == "svd":
                reproject = False
                from dask.array.linalg import svd
                try:
                    self._unfolded4decomposition = self.unfold()
                    # TODO: implement masking
                    if navigation_mask or signal_mask:
                        raise NotImplemented(
                            "Masking is not yet implemented for lazy SVD.")
                    U, S, V = svd(self.data)
                    factors = V.T
                    explained_variance = S**2 / self.data.shape[0]
                    loadings = U * S
                finally:
                    if self._unfolded4decomposition is True:
                        self.fold()
                        self._unfolded4decomposition is False
            else:
                this_data = []
                try:
                    for chunk in progressbar(self._block_iterator(
                            flat_signal=True,
                            get=get,
                            signal_mask=signal_mask,
                            navigation_mask=navigation_mask),
                                             total=nblocks,
                                             leave=True,
                                             desc='Learn'):
                        this_data.append(chunk)
                        if len(this_data) == num_chunks:
                            thedata = np.concatenate(this_data, axis=0)
                            method(thedata)
                            this_data = []
                    if len(this_data):
                        thedata = np.concatenate(this_data, axis=0)
                        method(thedata)
                except KeyboardInterrupt:
                    pass

            # GET ALREADY CALCULATED RESULTS
            if algorithm == 'PCA':
                explained_variance = obj.explained_variance_
                explained_variance_ratio = obj.explained_variance_ratio_
                factors = obj.components_.T

            elif algorithm == 'ORPCA':
                _, _, U, S, V = obj.finish()
                factors = U * S
                loadings = V
                explained_variance = S**2 / len(factors)

            elif algorithm == 'ONMF':
                factors, loadings = obj.finish()
                loadings = loadings.T

            # REPROJECT
            if reproject:
                if algorithm == 'PCA':
                    method = obj.transform

                    def post(a):
                        return np.concatenate(a, axis=0)
                elif algorithm == 'ORPCA':
                    method = obj.project
                    obj.R = []

                    def post(a):
                        return obj.finish()[4]
                elif algorithm == 'ONMF':
                    method = obj.project

                    def post(a):
                        return np.concatenate(a, axis=1).T

                _map = map(
                    lambda thing: method(thing),
                    self._block_iterator(flat_signal=True,
                                         get=get,
                                         signal_mask=signal_mask,
                                         navigation_mask=navigation_mask))
                H = []
                try:
                    for thing in progressbar(_map,
                                             total=nblocks,
                                             desc='Project'):
                        H.append(thing)
                except KeyboardInterrupt:
                    pass
                loadings = post(H)

            if explained_variance is not None and \
                    explained_variance_ratio is None:
                explained_variance_ratio = \
                    explained_variance / explained_variance.sum()

            # RESHUFFLE "blocked" LOADINGS
            ndim = self.axes_manager.navigation_dimension
            if algorithm != "svd":  # Only needed for online algorithms
                try:
                    loadings = _reshuffle_mixed_blocks(loadings, ndim,
                                                       (output_dimension, ),
                                                       nav_chunks).reshape(
                                                           (-1,
                                                            output_dimension))
                except ValueError:
                    # In case the projection step was not finished, it's left
                    # as scrambled
                    pass
        finally:
            self.data = original_data

        target = self.learning_results
        target.decomposition_algorithm = algorithm
        target.output_dimension = output_dimension
        if algorithm != "svd":
            target._object = obj
        target.factors = factors
        target.loadings = loadings
        target.explained_variance = explained_variance
        target.explained_variance_ratio = explained_variance_ratio

        # Rescale the results if the noise was normalized
        if normalize_poissonian_noise is True:
            target.factors = target.factors * rbH.ravel()[:, np.newaxis]
            target.loadings = target.loadings * raG.ravel()[:, np.newaxis]