Exemple #1
0
 def get_electron_energy_loss_spectrum(self, zlp, t):
     data = ((-1 / self.data).imag * eels_constant(self, zlp, t).data *
             self.axes_manager.signal_axes[0].scale)
     s = self._deepcopy_with_new_data(data)
     s.set_signal_type("EELS")
     s.metadata.General.title = ("EELS calculated from " +
                                 self.metadata.General.title)
     return s
 def get_electron_energy_loss_spectrum(self, zlp, t):
     data = ((-1 / self.data).imag * eels_constant(self, zlp, t).data *
             self.axes_manager.signal_axes[0].scale)
     s = self._deepcopy_with_new_data(data)
     s.set_signal_type("EELS")
     s.metadata.General.title = ("EELS calculated from " +
                                 self.metadata.General.title)
     return s
    def setUp(self):
        """To test the kramers_kronig_analysis we will generate 3
        EELSSpectrum instances. First a model energy loss function(ELF),
        in our case following the Drude bulk plasmon peak. Second, we
        simulate the inelastic scattering to generate a model scattering
        distribution (SPC). Finally, we use a lorentzian peak with
        integral equal to 1 to simulate a ZLP.

        """

        # Parameters
        i0 = 1.
        t = hs.signals.Signal(np.arange(10, 70, 10).reshape((2, 3)))
        t.axes_manager.set_signal_dimension(0)
        scale = 0.02

        # Create an 3x2x2048 spectrum with Drude plasmon
        s = hs.signals.EELSSpectrum(np.zeros((2, 3, 2 * 2048)))
        s.set_microscope_parameters(
            beam_energy=300.0,
            convergence_angle=5,
            collection_angle=10.0)
        s.axes_manager.signal_axes[0].scale = scale
        k = eels_constant(s, i0, t)

        vpm = VolumePlasmonDrude()
        m = s.create_model(auto_background=False)
        m.append(vpm)
        vpm.intensity.map['values'][:] = 1
        vpm.plasmon_energy.map['values'] = np.array([[8., 18.4, 15.8],
                                                     [16.6, 4.3, 3.7]])
        vpm.fwhm.map['values'] = np.array([[2.3, 4.8, 0.53],
                                           [3.7, 0.3, 0.3]])
        vpm.intensity.map['is_set'][:] = True
        vpm.plasmon_energy.map['is_set'][:] = True
        vpm.fwhm.map['is_set'][:] = True
        s.data = (m.as_signal() * k).data

        # Create ZLP
        z = s.deepcopy()
        z.axes_manager.signal_axes[0].scale = scale
        z.axes_manager.signal_axes[0].offset = -10
        zlp = Lorentzian()
        zlp.A.value = i0
        zlp.gamma.value = 0.2
        zlp.centre.value = 0.0
        z.data[:] = zlp.function(z.axes_manager[-1].axis).reshape((1, 1, -1))
        z.data *= scale
        self.s = s
        self.thickness = t
        self.k = k
        self.zlp = z
 def get_electron_energy_loss_spectrum(self, zlp, t):
     for axis in self.axes_manager.signal_axes:
         if not axis.is_uniform:
             raise NotImplementedError(
                 "The function is not implemented for non-uniform axes.")
     data = ((-1 / self.data).imag * eels_constant(self, zlp, t).data *
             self.axes_manager.signal_axes[0].scale)
     s = self._deepcopy_with_new_data(data)
     s.data = s.data.real
     s.set_signal_type("EELS")
     s.metadata.General.title = ("EELS calculated from " +
                                 self.metadata.General.title)
     return s