class Word(BasicText): """Represents a Word.""" if "hyphen" in sys.modules: h_en = Hyphenator('en_US') def __init__(self, text): """Initializes a Word.""" self.text = text @BasicText.text.setter def text(self, new_text): self._text = new_text.strip(""" (),.?!;:\"\'""") def count_syllables(self): """ Counts the number of syllables for an English language Word. """ try: n_syllables = len(Word.h_en.syllables(self.text)) if n_syllables > 0: return n_syllables except ValueError: # Thrown by syllables function for words longer than 100 characters long. return 30 return 1 def is_adverb(self): """Determines whether word is an adverb.""" return re.match(r"\w+ly", self.text)
def build_sentence_info(timestamps, sentence, sent_dict): ''' Build sentence info from timestamps, sentence text and sentiment lexicon :param timestamps: :param sentence: :param sent_dict: :return: ''' # for test # print sentence h_en = Hyphenator('en_US') info_list = [] # words = re.split('\W+', sentence) words = re.split('[,.!?\r\n ]+', sentence) # print words # print len(words) # print len(timestamps) words.remove('') words_with_punct = sentence.split() for ind, word in enumerate(words): if word in sent_dict: c_sentiment = sent_dict[word] else: c_sentiment = 0 punct = '' if words_with_punct[ind] != word: punct = words_with_punct[ind][-1] num = t2n.text2num(word) info_list.append( (word, timestamps[ind * 2], timestamps[ind * 2 + 1], len(h_en.syllables(unicode(word))), c_sentiment, punct, num)) return info_list
def syllablize(poem): # syllablizer setup if not is_installed(language): install(language) hyph = Hyphenator(language) # output dict to send back through API output = [] for line in poem: # list of words in line words = line.split() syllablized_line = [] for word in words: syls = hyph.syllables(word) new_word = "" if len(syls) == 0: new_word = word else: for syl in syls: new_word += syl new_word += " " syllablized_line.append(new_word.strip()) if len(syllablized_line) > 0: output.append(syllablized_line) return output
def main(): hyphenator = Hyphenator('en_GB') with open(filename, 'r', encoding='utf-8') as f: chapters = parse_chapters(f) with open(filename, 'w', encoding='utf-8', newline='\n') as f: for chapter_idx, (chapter_name, entries, head_eager_code, tail_eager_code) in enumerate(chapters): print(chapter_name) f.write(f'@<|\n{head_eager_code}\n|>\n') for entry_idx, (code, chara_name, dialogue) in enumerate(entries): if code: f.write(f'<|\n{code}\n|>\n') if dialogue: dialogue = normalize(dialogue) dialogue = add_soft_hyphens(hyphenator, dialogue) dialogue = add_nbsp(dialogue) if chara_name: f.write(f'{chara_name}::{dialogue}\n') else: f.write(dialogue + '\n') if entry_idx < len(entries) - 1: f.write('\n') if tail_eager_code: f.write(f'@<|\n{tail_eager_code}\n|>\n') else: f.write('@<||>\n') if chapter_idx < len(chapters) - 1: f.write('\n')
def make_dicts(filename): syllables = {} with open(filename) as theFile: f = theFile.read() f = f.lower() f = f.replace('\r', '\n') lines = f.split("\n") for line in lines: if line != "": line = line.split('\\') if line[1] not in syllables and len(line[1].split()) == 1: syllables[line[1]] = line[-1].split("-") for lang in ['en_US']: if not is_installed(lang): install(lang) #other dict h_en = Hyphenator('en_US') return (syllables, h_en)
def syllabizeNames(nameList): tempList = [] for lang in ['en_US']: if not is_installed(lang): install(lang) en_US = Hyphenator('en_US') for item in nameList: tempList.append(en_US.syllables(item)) return tempList
def main(arguments: List[str] = None): namespace = parser.parse_args(arguments) command = namespace.command if command == 'export_font': from .pdf import PDF glyphs = set(GLYPHS) cwd = pathlib.Path('.') if namespace.text is not None: for text_glob in namespace.text: for text_file in cwd.glob(text_glob): print(f'Taking glyphs from:\n {text_file}') glyphs.update(set(text_file.read_text('utf-8'))) font = PDF.font(namespace.font_name, namespace.font_size, glyphs=glyphs) font.export(namespace.output) elif command == 'tester': from .tester import main main(namespace) elif command == 'hyphenate': text = namespace.input.read().decode() hyphenator = Hyphenator(language=namespace.language) for token_type, text in tokenize(text): if token_type is TokenType.WORD: syllables = hyphenator.syllables(text) or [text] namespace.output.write_chunk('-'.join(syllables).encode()) else: namespace.output.write_chunk(text.encode()) elif command == 'render': import json from .printer import Page, FontSpec, Fragment from .pdf import PDF text = namespace.input.read() raw_pages = text.split('\0\n') pages = [] for raw_page in raw_pages: if not raw_page: continue page_data = json.loads(raw_page) font_spec = FontSpec(page_data['font_spec']['name'], page_data['font_spec']['size']) paper_width = page_data['paper_width'] paper_height = page_data['paper_height'] fragments = [ Fragment(**fragment) for fragment in page_data['fragments'] ] page = Page(font_spec, paper_width, paper_height, fragments) pages.append(page) pdf = PDF(namespace.output) pdf.render(pages) pdf.finish()
def encode(self, word): num_string = "" h_mx = Hyphenator('es_MX') for syllable in h_mx.syllables(unicode(word)): for idx, pattern in enumerate(self.patterns): for regex in pattern: if re.match(regex, syllable): num_string += str(idx) return num_string
def test_beautiful(self): h_en = Hyphenator('en_US') self.assertEqual([['beau', 'tiful'], [u'beauti', 'ful']], h_en.pairs('beautiful')) self.assertEqual(['beau-', 'tiful'], h_en.wrap('beautiful', 6)) self.assertEqual(['beauti-', 'ful'], h_en.wrap('beautiful', 7)) self.assertEqual(['beau', 'ti', 'ful'], h_en.syllables('beautiful'))
def main(args): if args.quantize and args.device != "cpu": raise RuntimeError("Quantization only available on CPU devices") port = args.port or os.environ.get("PORT") or 8000 for handler in logging.root.handlers[:]: logging.root.removeHandler(handler) lvl = logging.DEBUG if args.verbose else logging.INFO logging.basicConfig(level=lvl) word_generator = WordGenerator( device=args.device, forward_model_path=args.forward_model_path, inverse_model_path=args.inverse_model_path, blacklist_path=args.blacklist_path, quantize=args.quantize, is_urban=False, ) urban_generator = None if args.forward_urban_model_path: logging.info(f"Creating urban model from {args.forward_urban_model_path}") urban_generator = WordGenerator( device=args.device, forward_model_path=args.forward_urban_model_path, inverse_model_path=None, blacklist_path=args.blacklist_path, quantize=args.quantize, is_urban=True, ) h_en = Hyphenator('en_US') logging.info(f"Warming up with word generation") gen_word = word_generator.generate_word() logging.info(f"Generated {gen_word}") server = grpc.server(futures.ThreadPoolExecutor(max_workers=10)) wordservice_pb2_grpc.add_WordServiceServicer_to_server( WordServiceServicer(word_generator, h_en, urban_generator=urban_generator), server ) server.add_insecure_port("[::]:{}".format(port)) server.start() logging.info(f"Listening on port {port}") try: while True: time.sleep(3600 * 24) except KeyboardInterrupt: server.stop(args.shutdown_grace_duration)
def sybl_counts(text, abbr=Abbreviations(), hyphen=Hyphenator('en_US'), prepped=False): """Count number of syllables in text, return in sybl_count; count number of words with three or more syllables, return in polysyblword_count. """ if not prepped: text = word_array(text, abbr) sybl_count = 0 polysyblword_count = 0 for word in text: syblperword_c = max(1, len(hyphen.syllables(word))) sybl_count += syblperword_c if syblperword_c >= 3: polysyblword_count += 1 return {'sybl_count': sybl_count, 'polysyblword_count': polysyblword_count}
def smog_score(text=None, abbr=None, hyphen=None, vars={}): """Calculate SMOG score.""" if text: if not abbr: abbr = Abbreviations() if not hyphen: hyphen = Hyphenator('en_US') text = punct_clean(text, abbr) vars['sent_count'] = sent_count(text, abbr, True) text = word_array(text, abbr, True) vars['polysyblword_count'] = sybl_counts(text, abbr, hyphen, True)['polysyblword_count'] return 3.1291 + 1.0430 * sqrt( 30 * (vars['polysyblword_count'] / float(vars['sent_count'])))
def tokenize_word_to_syllables(word, lang): global hyphenator if hyphenator is None: print('Initializing Hyphenator (' + lang + ')...') hyphenator = Hyphenator(lang) syllables = hyphenator.syllables(word) # Word with only one syllable need special treatment, # because the hyphenator does not recognize them if len(syllables) == 0: syllables = [word] return syllables
def hyphenate(value, arg=None, autoescape=None): if autoescape: esc = conditional_escape else: esc = lambda x: x minlen = 7 if arg: args = arg.split(u',') code = args[0] if len(args) > 1: minlen = int(args[1]) else: code = settings.LANGUAGE_CODE # # Looks like this is assuming that the language code will arrive as 'xx- # YY'. In our case, it will arrive as simply 'en', so we MUST expand this # into a locale in order to work with PyHyphen. # # TODO: This should probably be a lookup against a dict in settings? s = code.split(u'-') if len(s) == 1: if s[0] == 'en': s.append(u'US') elif s[0] == 'bg': s.append(u'BG') lang = s[0].lower() + u'_' + s[1].upper() if not dictools.is_installed(lang): dictools.install(lang) h = Hyphenator(lang) new = [] for word in value.split(u' '): if len(word) > minlen and word.isalpha(): new.append(u'­'.join(h.syllables(word))) else: new.append(word) result = u' '.join(new) return mark_safe(result)
def gunningfog_score(text=None, abbr=None, hyphen=None, vars={}): """Calculate Gunning Fog score.""" if text: if not abbr: abbr = Abbreviations() if not hyphen: hyphen = Hyphenator('en_US') text = punct_clean(text, abbr) vars['sent_count'] = sent_count(text, abbr, True) text = word_array(text, abbr, True) vars['word_count'] = word_count(text, abbr, True) vars['polysyblword_count'] = sybl_counts(text, abbr, hyphen, True)['polysyblword_count'] return 0.4 * ((vars['word_count'] / float(vars['sent_count'])) + 100 * (vars['polysyblword_count'] / float(vars['word_count'])))
def fleschkincaid_score(text=None, abbr=None, hyphen=None, vars={}): """Calculate Flesch-Kincaid score.""" if text: if not abbr: abbr = Abbreviations() if not hyphen: hyphen = Hyphenator('en_US') text = punct_clean(text, abbr) vars['sent_count'] = sent_count(text, abbr, True) text = word_array(text, abbr, True) vars['word_count'] = word_count(text, abbr, True) vars['sybl_count'] = sybl_counts(text, abbr, hyphen, True)['sybl_count'] return -15.59 + 0.39 * (vars['word_count'] / vars['sent_count']) + 11.8 * ( vars['sybl_count'] / vars['word_count'])
def _set_lang_dict(self): if self.dict_download: try: if not is_installed(self.lang_code): if self.verbose: print(Msg.DICT_INSTALL(self.lang_code)) install(self.lang_code) self.lang_dict = Hyphenator(self.lang_code) except: pass if self.verbose: if is_installed(self.lang_code): print(Msg.DICT_INSTALLED(self.lang_code)) else: print(Msg.DICT_INSTALL_FAILED(self.lang_code))
def flesch_score(text=None, abbr=None, hyphen=None, vars={}): """Calculate Flesch Reading Ease score.""" if text: if not abbr: abbr = Abbreviations() if not hyphen: hyphen = Hyphenator('en_US') text = punct_clean(text, abbr) vars['sent_count'] = sent_count(text, abbr, True) text = word_array(text, abbr, True) vars['word_count'] = word_count(text, abbr, True) vars['sybl_count'] = sybl_counts(text, abbr, hyphen, True)['sybl_count'] return 206.835 - 1.015 * (vars['word_count'] / float( vars['sent_count'])) - 84.6 * (vars['sybl_count'] / float(vars['word_count']))
def main(): parser = argparse.ArgumentParser( description="Wrap text file to given width, with hyphenation" ) parser.add_argument("-w", "--width", type=int, default=70, help="Maximum line width") parser.add_argument("-l", "--language", default="en_US", help="Text file locale") parser.add_argument("path", help="Text file path. Use '-' to read from standard input.") args = parser.parse_args() hyphenator = Hyphenator(args.language) if args.path == "-": for content in sys.stdin: for line in textwrap2.wrap(content, width=args.width, use_hyphenator=hyphenator): print(line) else: with open(args.path) as f: for line in textwrap2.wrap(f.read(), width=args.width, use_hyphenator=hyphenator): print(line)
def syllablize(line): """ take a line and split it into a list of syllables """ hyph_en = Hyphenator('en_US') syll_list = [] #get words separately + count hyphenated words as 2 words words = line.replace("-", " ").split() for word in words: #remove common punctuation word = word.replace(",", "").replace(":", "").replace(";", "") syllables = hyph_en.syllables(word) if not syllables: #pyhyphen sometimes returns 1 syllable words back to you, #but sometimes return an empty list... don't know why syll_list.append(word) for syll in syllables: syll_list.append(syll) return syll_list
def word_phonic_dict_func(self): ''' Output: Ordered dictionary Keys - word Value - phonetic representation of the key ''' h_en = Hyphenator('en_US') for line in self.lyrics_tokenized: for word in line: if word not in self.arpabet_dict.keys(): try: self.arpabet_dict.update( {word: pr.phones_for_word(word)[0]}) temp = h_en.syllables(unicode(word)) if len(temp) > 0: self.word_syl_dict.update({word: temp}) else: self.word_syl_dict.update({word: [unicode(word)]}) except Exception as e: print e
def sylTokenizer(text): words = wordTokenizer(text) if language == 'en': en = Hyphenator('en_US') syl_split = map(lambda x: en.syllables(x) if (len(x) > 1 and len(en.syllables(x)) > 0) else [x], words) comb_syl_split = map(lambda x: ["".join(x[i:i + ngrams]) for i in range(max(len(x) - ngrams + 1, 1)) ], syl_split) return reduce(lambda x, y: x + y, comb_syl_split) elif language == 'te': te = Syllabifier() syl_split = map(lambda x: te.syllabify_te(x) if (len(x) > 1 and len(te.syllabify_te(x)) > 0) else [x], words) comb_syl_split = map(lambda x: ["".join(x[i:i + ngrams]) for i in range(max(len(x) - ngrams + 1, 1)) ], syl_split) return reduce(lambda x, y: x + y, comb_syl_split) else: hi = Syllabifier() syl_split = map(lambda x: hi.syllabify_hi(x) if (len(x) > 1 and len(hi.syllabify_hi(x)) > 0) else [x], words) comb_syl_split = map(lambda x: ["".join(x[i:i + ngrams]) for i in range(max(len(x) - ngrams + 1, 1)) ], syl_split) return reduce(lambda x, y: x + y, comb_syl_split)
def __init__(self, text, abbr=Abbreviations(), hyphen=Hyphenator('en_US'), easy=EasyWords()): text = punct_clean(text, abbr) self.sent_count = sent_count(text, abbr, True) self.char_count = char_count(text, abbr, True) text = word_array(text, abbr, True) self.word_count = word_count(text, abbr, True) self.notdalechall_count = notdalechall_count(text, abbr, easy, True) sybl_list = sybl_counts(text, abbr, hyphen, True) self.sybl_count = sybl_list['sybl_count'] self.polysyblword_count = sybl_list['polysyblword_count'] self.counts = { 'char_count': self.char_count, 'word_count': self.word_count, 'sent_count': self.sent_count, 'sybl_count': self.sybl_count, 'notdalechall_count': self.notdalechall_count, 'polysyblword_count': self.polysyblword_count } self.flesch_score = flesch_score(vars=self.counts) self.fleschkincaid_score = fleschkincaid_score(vars=self.counts) self.gunningfog_score = gunningfog_score(vars=self.counts) self.smog_score = smog_score(vars=self.counts) self.dalechall_score = dalechall_score(vars=self.counts) self.scores = { 'flesch_score': self.flesch_score, 'fleschkincaid_score': self.fleschkincaid_score, 'gunningfog_score': self.gunningfog_score, 'smog_score': self.smog_score, 'dalechall_score': self.dalechall_score }
def __init__(self, text, abbr=Abbreviations(), hyphen=Hyphenator('en_US'), easy=EasyWords()): text = punct_clean(text, abbr) self.sent_count = sent_count(text, abbr, True) self.char_count = char_count(text, abbr, True) text = word_array(text, abbr, True) self.word_count = word_count(text, abbr, True) self.notdalechall_count = notdalechall_count(text, abbr, easy, True) sybl_list = sybl_counts(text, abbr, hyphen, True) self.sybl_count = sybl_list['sybl_count'] self.polysyblword_count = sybl_list['polysyblword_count'] self.counts = { 'char_count': self.char_count, 'word_count': self.word_count, 'sent_count': self.sent_count, 'sybl_count': self.sybl_count, 'notdalechall_count': self.notdalechall_count, 'polysyblword_count': self.polysyblword_count }
def build_sentence_data(title, timestamps, sentence, sent_dict): ''' Build sentence info from timestamps, sentence text and sentiment lexicon :param timestamps: :param sentence: :param sent_dict: :return: a SentenceData object contain text-based information about the sentence ''' # for test # print sentence s = SentenceData(title, sentence) s.words = [] h_en = Hyphenator('en_US') words = re.split('[,.!?\r\n ]+', sentence) words.remove('') words_with_punct = sentence.split() for ind, word in enumerate(words): if word in sent_dict: c_sentiment = sent_dict[word] else: c_sentiment = 0 punct = '' if words_with_punct[ind] != word: punct = words_with_punct[ind][-1] num = t2n.text2num(word) if num == -1: num = '' else: num = str(num) w = WordData(word, float(timestamps[ind * 2]), float(timestamps[ind * 2 + 1]), c_sentiment, len(h_en.syllables(unicode(word))), punct, num) s.words.append(w) return s
def __init__(self, text='Defualt Tweet'): # only keep latin chars: self.rawText = re.sub(ur'[^\x00-\x7F]', u'', text) self.textWords = self.rawText.split() self.h_en = Hyphenator('en_US') self.badSymbols = ['http:', 'https:', '&'] self.forbiddenThings = ['@'] # random syms self.forbiddenWords = [ 'el', 'la', 'en', 'tu', # spanish 'Et', 'le', 'aux', 'les', 'de', 'des', 'du', 'il', 'Elle', 'ses', 'sa', 'ces', 'cela', 'est', 'vous', 'tous', 'nous', 'allez', 'alons' ] # french self.forbiddenEnds = [ 'the', 'and', 'a', 'an', 'for', 'at', 'except', 'or', 'has', 'my', 'your', 'their', 'his', 'hers', 'her\'s', 'get', 'it\'ll', 'to', 'like', 'is', 'I' ]
def split_lyrics_to_syllables(selected_song, user_lyrics): """ The lyrics text in original music scores are split into multiple syllables and each syllable will be paired with 1 or more key/beat in the song. For example, in the "Happy Birthday" song, the word "happy" has been split into "hap" and "py" and each syllable corresponds to one beat in the song. Hence, we need to split the user lyrics into multiple syllables as well. This function utilizes a Hyphenator to split the user's lyrics into several syllables until the syllables can fit into the modifiable region of the song music score. i.e. the number of syllables from split user lyrics should be equal to the number of syllables in the modifiable region of music score. The modifiable region of each song has already been defined in song_details.json, and can be obtained through the argument selected_song. Arguments: selected_song - A JSON object representing the song selected by the user. This object includes information such as the song music score file path, original song lyrics and the position of the modifiable region of the music score. The JSON object is retrieved from api/static/song_details.json. user_lyrics - A string which is the lyrics text that will replace the orginal lyrics in the modifiable portion of the song music score Exceptions raised: ValueError - Raised when the song language is not English or Spanish RuntimeError - Raised when the split user lyrics cannot fit into the song modifiable region Return: split_user_lyrics - A list of strings, where the length of the list is equal to the length of modifiable region in the music score, and each string in the list will replace one syllable in the modifiable region of the song """ # retrieve the position of modifiable lyrics region in the music score & the song language start_edit_pos, end_edit_pos, song_language = selected_song[ "startEditPos"], selected_song["endEditPos"], selected_song["language"] # determine the total number of syllables that can be modified in the music score file xml_edit_num = end_edit_pos - start_edit_pos + 1 # create Hyphenator object based on song language if song_language == "en_US": h = Hyphenator('en_US') elif song_language == "es": h = Hyphenator('es') else: raise ValueError( "Song language not supported, currently only support English and Spanish." ) split_user_lyrics = [] # split the user's lyrics sentence into a list of words user_lyrics_words = user_lyrics.split() # split each word into their corresponding syllables user_lyrics_syllables = [] for word in user_lyrics_words: syllable = h.syllables(word) if syllable != []: user_lyrics_syllables += syllable else: # handle the case of single-syllable word user_lyrics_syllables.append(word) syllable_fitting_ratio = xml_edit_num / len(user_lyrics_syllables) if syllable_fitting_ratio == 1: # split user lyrics syllables fit perfectly into the modifiable area split_user_lyrics = user_lyrics_syllables elif syllable_fitting_ratio > 1: # split user lyrics syllables can fit into modifiable area but has too few syllables while len(user_lyrics_syllables) < xml_edit_num: user_lyrics_syllables.append("") split_user_lyrics = user_lyrics_syllables else: # split user lyrics syllables is more than the number of syllables requried in the modifiable area # need to re-split the word word_fitting_ratio = xml_edit_num / len(user_lyrics_words) if word_fitting_ratio == 1: # cases where number of words in user lyrics can fit into the music score modifiable area split_user_lyrics = user_lyrics_words elif word_fitting_ratio > 1: # cases where number of words can fit into the modificable area, but has too few words while len(user_lyrics_words) < xml_edit_num: user_lyrics_words.append("") split_user_lyrics = user_lyrics_words else: # cases where number of words in user lyrics cannot fit into the music score modifiable area # repetitively combine first two words into one, until word_fitting_ratio becomes 1 (i.e. until user lyrics word can fit into the modifiable area) while word_fitting_ratio != 1 and len(user_lyrics_words) > 1: user_lyrics_words[0:2] = [''.join(user_lyrics_words[0:2])] word_fitting_ratio = xml_edit_num / len(user_lyrics_words) split_user_lyrics = user_lyrics_words if len(split_user_lyrics) == xml_edit_num: return split_user_lyrics else: raise RuntimeError( 'Fail to fit user lyrics into the song modifiable region')
from hyphen import Hyphenator h_en = Hyphenator('en_US') output = h_en.syllables('longer') print(output) def get_syllables(word): """ using hypenator return syllables of an input word """ syllables = h_en.syllables(word) if syllables == []: return [word] else: return syllables def get_coloured_para(para): """ for each word in a para get the sylleblyes of that word create a coloured version of the word patch these together into a new vibrant paragraph """ coloured_para = [] for word in para: colored_word = color_word(word) coloured_para.append(colored_word) return coloured_para
import math from hyphen import Hyphenator import project from src.helper.files import read_lines from acl_cleaned_get_ocr_errors import get_ocr_errors from acl_cleaned_analyse_ocr_errors import get_ocr_character_edits if __name__ == "__main__": raw_file = sys.argv[1] clean_file = sys.argv[2] out_file = sys.argv[3] if len(sys.argv) > 3 else None hyphenator = Hyphenator() error_frequencies = {} for i, (corrupt, correct) in enumerate(zip(read_lines(raw_file), read_lines(clean_file))): print(f"** SEQUENCE {i} **") corrupt_tokens = corrupt.split() correct_tokens = correct.split() ocr_errors = get_ocr_errors(corrupt_tokens, correct_tokens) for corrupt, correct in ocr_errors: corrupt_parts = corrupt.split(" ") correct_parts = correct.split(" ") if len(corrupt_parts) != len(correct_parts): continue for corrupt_part, correct_part in zip(corrupt_parts, correct_parts): edits = get_ocr_character_edits(correct_part, corrupt_part)
def hyphenate(xhtml: str, language: Optional[str], ignore_h_tags: bool = False) -> str: """ Add soft hyphens to a string of XHTML. INPUTS xhtml: A string of XHTML language: An ISO language code, like en-US, or None to auto-detect based on XHTML input ignore_h_tags: True to not hyphenate within <h1-6> tags OUTPUTS A string of XHTML with soft hyphens inserted in words. The output is not guaranteed to be pretty-printed. """ hyphenators: Dict[str, Hyphenator] = {} soup = BeautifulSoup(xhtml, "lxml") if language is None: try: language = str(soup.html["xml:lang"]) except Exception: try: language = str(soup.html["lang"]) except Exception: raise se.InvalidLanguageException( "No `xml:lang` or `lang` attribute on `<html>` element; couldn’t guess file language." ) try: language = language.replace("-", "_") if language not in hyphenators: hyphenators[language] = Hyphenator(language) except Exception: raise se.MissingDependencyException( f"Hyphenator for language `{language}` not available.\nInstalled hyphenators: {list_installed()}" ) text = str(soup.body) result = text word = "" in_tag = False tag_name = "" reading_tag_name = False in_h_tag = False pos = 1 h_opening_tag_pattern = regex.compile("^h[1-6]$") h_closing_tag_pattern = regex.compile("^/h[1-6]$") # The general idea here is to read the whole contents of the <body> tag character by character. # If we hit a <, we ignore the contents until we hit the next >. # Otherwise, we consider a word to be an unbroken sequence of alphanumeric characters. # We can't just split at whitespace because HTML tags can contain whitespace (attributes for example) for char in text: process = False if char == "<": process = True in_tag = True reading_tag_name = True tag_name = "" elif in_tag and char == ">": in_tag = False reading_tag_name = False word = "" elif in_tag and char == " ": reading_tag_name = False elif in_tag and reading_tag_name: tag_name = tag_name + char elif not in_tag and char.isalnum(): word = word + char elif not in_tag: process = True # Do we ignore <h1-6> tags? if not reading_tag_name and h_opening_tag_pattern.match(tag_name): in_h_tag = True if not reading_tag_name and h_closing_tag_pattern.match(tag_name): in_h_tag = False if ignore_h_tags and in_h_tag: process = False if process: if word != "": new_word = word # 100 is the hard coded max word length in the hyphenator module # Check here to avoid an error if len(word) < 100: syllables = hyphenators[language].syllables(word) if syllables: new_word = "\u00AD".join(syllables) result = result[:pos - len(word) - 1] + new_word + char + result[pos:] pos = pos + len(new_word) - len(word) word = "" pos = pos + 1 xhtml = regex.sub(r"<body.+<\/body>", "", xhtml, flags=regex.DOTALL) xhtml = xhtml.replace("</head>", "</head>\n\t" + result) return xhtml