Exemple #1
0
        matchYZ[i] = (None, 0)
        for j in sZ:
            cd = cover_distance(i,j)
            if matchYZ[i][1] < cd:
                matchYZ[i] = (j, cd)

    return matchXY, matchXZ, matchYZ




if __name__ == '__main__':

    # 'NOGA', 'FSL'
    p = Pacientes()
    e = Exercises()
    p.from_db(pilot='NOGA')
    e.from_db(pilot='NOGA')
    for ex in e.iterator():
        t = Trajectory(ex.get_coordinates())
        if t.straightness()[0] < 0.95:
            e.delete_exercises([ex.id])

    for ex in e.iterator():
        print (ex.uid + '-' + str(ex.id))

        trajec = Trajectory(np.array(ex.frame.loc[:, ['epx', 'epy']]), exer=ex.uid + ' ' + str(ex.id))
        beg, nd, vdis = trajec.find_begginning_end()
        print(beg, nd)

        ltuplesX = segment_signal(ex.frame['rhfx'] - ex.frame['lhfx'], beg, nd)
Exemple #2
0
            prevw = word(sdisc[0])
            lvoc = [prevw]
            for i in range(1, sdisc.shape[0]):
                nword = word(sdisc[i])
                if nword != prevw:
                    lvoc.append(nword)
            self.codes[c] = Counter(lvoc)

            # print(c, self.codes[c])


if __name__ == '__main__':
    from iWalker.Data import User, Exercise, Exercises, Pacientes, Trajectory
    from iWalker.Util.Misc import show_list_signals
    p = Pacientes()
    e = Exercises()
    p.from_db(pilot='NOGA')
    e.from_db(pilot='NOGA')
    e.delete_patients(['FSL30'])
    wlen = 64
    voclen = 3
    ncoefs = 3

    dseries = {}
    for ex in e.iterator():
        forces = ex.get_forces()
        if forces.shape[0] > wlen:
            dseries[ex.id] = forces[:, 0]

    boss = Boss(dseries, 10)
    boss.discretization_intervals(ncoefs, wlen, voclen)
Exemple #3
0
"""

__author__ = 'bejar'

from iWalker.Data import User, Exercise, Exercises, Pacientes, Trajectory
from iWalker.Util.Misc import show_list_signals
from iWalker.Util import Boss, boss_distance, euclidean_distance, bin_hamming_distance, hamming_distance,\
    cosine_similarity
from sklearn.manifold import MDS, Isomap, TSNE, SpectralEmbedding
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

if __name__ == '__main__':
    p = Pacientes()
    e = Exercises()
    p2 = Pacientes()
    e2 = Exercises()

    p.from_db(pilot='NOGALES')
    e.from_db(pilot='NOGALES')
    # p2.from_db(pilot='FSL')
    # e2.from_db(pilot='FSL')
    # e2.delete_patients(['FSL30'])
    #
    # e.merge(e2)

    e.delete_exercises([1425290750])
    # e.delete_exercises([1416241920, 1416241871, 1416409354, 1416391685, 1416933676, 1416918342, 1416391884, 1416391948])
    wlen = 128
    voclen = 3
Exemple #4
0
#         coef = np.zeros((nwindows, ncoef), dtype=np.complex)
#
#         for w in range(nwindows):
#             y = np.fft.rfft(series[w:w+wsize])
#             for l in range(ncoef):
#                 coef[w, l] = y[l]
#
#
#         return coef

if __name__ == '__main__':
    from iWalker.Data import User, Exercise, Exercises, Pacientes, Trajectory
    from iWalker.Util.Misc import show_list_signals

    p = Pacientes()
    e = Exercises()
    p.from_db(pilot='NOGA')
    e.from_db(pilot='NOGA')
    e.delete_patients(['FSL30'])

    ex = e.iterator().__next__()
    signal = ex.get_forces()[:, 0]
    # show_list_signals([signal])

    print(signal.shape)
    itime = time.time()
    coef1 = mft(signal, sampling=10, ncoef=15, wsize=32)
    ftime = time.time()
    print(ftime - itime)

    # itime = time.time()
from sklearn.manifold import MDS, Isomap, TSNE, SpectralEmbedding
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.mixture import BayesianGaussianMixture as Dirichlet
import matplotlib.colors as colors
from sklearn.metrics import silhouette_score
from itertools import product

__author__ = 'bejar'

# colors = "rgbymcykrgbymcyk"

if __name__ == '__main__':
    p = Pacientes()
    e = Exercises()

    p.from_db(pilot='NOGALES')
    e.from_db(pilot='NOGALES')
    e.delete_exercises([1424971539, 1424968950])
    e.delete_exercises([1425290750, 1425376956, 1425486861, 1425484520])

    # e.delete_exercises([1425290750])

    for wlen in [128]:
        # wlen = 128
        print('*' * 20)
        print('WLEN=', wlen)
        for ex in e.iterator():
            t = Trajectory(ex.get_coordinates())
            if t.straightness()[0] < 0.95:
Exemple #6
0
     ncoefs = 7
     
     data=[wlen, voclen, ncoefs]
     with open("ranscore_l0.csv", "a") as f:         
         writer = csv.writer(f)
         writer.writerow(data)
         writer.writerow(" ")
     
     
     x=10
     lol=[]
 
     for u in range(0, x):
         
         p = Pacientes()
         e = Exercises()
     
         p.from_db(pilot='NOGALES')
         e.from_db(pilot='NOGALES')
     
         e.delete_exercises([1425638547])
         e.delete_exercises([1425638507])
         e.delete_exercises([1425638379])
         e.delete_exercises([1425638343])
         e.delete_exercises([1425637677])
         e.delete_exercises([1425637642])
         e.delete_exercises([1425637526])
         e.delete_exercises([1425637492])
         e.delete_exercises([1425637369])
         e.delete_exercises([1425637335])
         e.delete_exercises([1425577862])