Exemple #1
0
    def make(self, key):

        x, y, z, axial = (ChannelBrainLocation & key).fetch(
            'channel_x', 'channel_y', 'channel_z', 'channel_axial',
            order_by='channel_axial')
        xyz_channels = np.c_[x, y, z]
        key['region_boundaries'], key['region_label'], \
            key['region_color'], key['region_id'] = \
            EphysAlignment.get_histology_regions(
                xyz_channels.astype('float')/1e6, axial.astype('float'))

        self.insert1(key)
Exemple #2
0
def _load_brain_regions(eid, probe_idx=0):
    one = ONE()
    ba = AllenAtlas()

    probe = 'probe0%d' % probe_idx
    ins = one.alyx.rest('insertions', 'list', session=eid, name=probe)[0]

    xyz_chans = load_channels_from_insertion(ins,
                                             depths=SITES_COORDINATES[:, 1],
                                             one=one,
                                             ba=ba)
    region, region_label, region_color, _ = EphysAlignment.get_histology_regions(
        xyz_chans, SITES_COORDINATES[:, 1], brain_atlas=ba)
    return region, region_label, region_color
    def make(self, key):

        x, y, z = (ChannelBrainLocation & key).fetch('channel_ml',
                                                     'channel_ap',
                                                     'channel_dv')

        coords = (ephys.ChannelGroup & key).fetch1('channel_local_coordinates')

        xyz_channels = np.c_[x, y, z]
        key['region_boundaries'], key['region_label'], \
            key['region_color'], key['region_id'] = \
            EphysAlignment.get_histology_regions(
                xyz_channels.astype('float')/1e6, coords[:, 1])

        self.insert1(key)
Exemple #4
0
from ibllib.pipes.ephys_alignment import EphysAlignment
from oneibl.one import ONE
from brainbox.io.one import load_channel_locations
import numpy as np
import matplotlib.pyplot as plt

one = ONE(base_url="https://alyx.internationalbrainlab.org")
# Load data from 'ZM_2407' '2019-12-06'
eid = '03d3cffc-755a-43db-a839-65d8359a7b93'
probe = 'probe_00'
channels = load_channel_locations(eid, one=one, probe=probe)
# xyz coords of channels
xyz_channels = np.c_[channels[probe].x, channels[probe].y, channels[probe].z]
# depth along probe of channels
depths = channels[probe].axial_um
region, region_label, region_colour, region_id = EphysAlignment.get_histology_regions(xyz_channels, depths)

fig, ax1 = plt.subplots(figsize=(4,10))
for reg, col in zip(region, region_colour):
    height = np.abs(reg[1]- reg[0])
    bottom = reg[0]
    color = col/255
    ax1.bar(x=0.5, height=height, width=1, color=color, bottom=reg[0], edgecolor='w')

ax1.set_yticks(region_label[:, 0].astype(int))
ax1.set_yticklabels(region_label[:, 1])
ax1.hlines([0, 3840], *ax1.get_xlim(), linestyles='dashed', linewidth = 3, colors='k')
plt.show()

Exemple #5
0
def plot_alignment(insertion, traj, ind=None):
    depths = SITES_COORDINATES[:, 1]
    xyz_picks = np.array(insertion['json']['xyz_picks']) / 1e6

    alignments = traj['json'].copy()
    k = list(alignments.keys())[-1]  # if only I had a Walrus available !
    alignments = {k: alignments[k]}
    # Create a figure and arrange using gridspec
    widths = [1, 2.5]
    heights = [1] * len(alignments)
    gs_kw = dict(width_ratios=widths, height_ratios=heights)
    fig, axis = plt.subplots(len(alignments),
                             2,
                             constrained_layout=True,
                             gridspec_kw=gs_kw,
                             figsize=(8, 9))

    # Iterate over all alignments for trajectory
    # 1. Plot brain regions that channel pass through
    # 2. Plot coronal slice along trajectory with location of channels shown as red points
    # 3. Save results for each alignment into a dict - channels
    channels = {}
    for iK, key in enumerate(alignments):

        # Location of reference lines used for alignmnet
        feature = np.array(alignments[key][0])
        track = np.array(alignments[key][1])
        chn_coords = SITES_COORDINATES
        # Instantiate EphysAlignment object
        ephysalign = EphysAlignment(xyz_picks,
                                    depths,
                                    track_prev=track,
                                    feature_prev=feature)

        # Find xyz location of all channels
        xyz_channels = ephysalign.get_channel_locations(feature, track)
        # Find brain region that each channel is located in
        brain_regions = ephysalign.get_brain_locations(xyz_channels)
        # Add extra keys to store all useful information as one bunch object
        brain_regions['xyz'] = xyz_channels
        brain_regions['lateral'] = chn_coords[:, 0]
        brain_regions['axial'] = chn_coords[:, 1]

        # Store brain regions result in channels dict with same key as in alignment
        channel_info = {key: brain_regions}
        channels.update(channel_info)

        # For plotting -> extract the boundaries of the brain regions, as well as CCF label and colour
        region, region_label, region_colour, _ = ephysalign.get_histology_regions(
            xyz_channels, depths)

        # Make plot that shows the brain regions that channels pass through
        ax_regions = fig.axes[iK * 2]
        for reg, col in zip(region, region_colour):
            height = np.abs(reg[1] - reg[0])
            bottom = reg[0]
            color = col / 255
            ax_regions.bar(x=0.5,
                           height=height,
                           width=1,
                           color=color,
                           bottom=reg[0],
                           edgecolor='w')
        ax_regions.set_yticks(region_label[:, 0].astype(int))
        ax_regions.yaxis.set_tick_params(labelsize=8)
        ax_regions.get_xaxis().set_visible(False)
        ax_regions.set_yticklabels(region_label[:, 1])
        ax_regions.spines['right'].set_visible(False)
        ax_regions.spines['top'].set_visible(False)
        ax_regions.spines['bottom'].set_visible(False)
        ax_regions.hlines([0, 3840],
                          *ax_regions.get_xlim(),
                          linestyles='dashed',
                          linewidth=3,
                          colors='k')
        # ax_regions.plot(np.ones(channel_depths_track.shape), channel_depths_track, '*r')

        # Make plot that shows coronal slice that trajectory passes through with location of channels
        # shown in red
        ax_slice = fig.axes[iK * 2 + 1]
        brain_atlas.plot_tilted_slice(xyz_channels, axis=1, ax=ax_slice)
        ax_slice.plot(xyz_channels[:, 0] * 1e6, xyz_channels[:, 2] * 1e6, 'r*')
        ax_slice.title.set_text(insertion['id'] + '\n' + str(key))

    # Make sure the plot displays
    plt.show()
Exemple #6
0
    def get_brain_regions(self, traj, ins=None, mapping='Allen'):
        depths = SITES_COORDINATES[:, 1]
        xyz_channels = self.get_channels(traj, ins=ins, depths=depths)
        (region, region_label,
         region_colour, _) = EphysAlignment.get_histology_regions(xyz_channels, depths,
                                                                  brain_atlas=self.ba,
                                                                  mapping=mapping)
        return region, region_label, region_colour



#
# cvol[np.unravel_index(ba._lookup(all_channels), cvol.shape)] = 1

# from ibllib.atlas import AllenAtlas
# ba = AllenAtlas()
# import vedo
# import numpy as np
#
# actor = vedo.Volume(ba.image, c='bone', spacing = np.array([25]*3), mapper='smart', mode=0, alphaGradient=0.5)
# plt = vedo.Plotter()
# plt.add(actor)
# plt.show()

#from vedo import *
#from ibllib.atlas import AllenAtlas
#ba = AllenAtlas()
#import numpy as np
#import vtk
#la = ba.label
#la[la != 0] = 1
#vol2 = Volume(la).alpha([0, 0, 0.5])
#vol = Volume(ba.image).alpha([0, 0, 0.8]).c('bone').pickable(False)
##vol = Volume(ba.image).c('bone').pickable(False)
#
#plane = vtk.vtkPlane()
#clipping_planes = vtk.vtkPlaneCollection()
#clipping_planes.AddItem(plane)
#vol2.mapper().SetClippingPlanes(clipping_planes)
##
#plane.SetOrigin(vol.center() + np.array([0, -100, 0]))
#plane.SetNormal(0.5, 0.866, 0)
##
#sl = vol.slicePlane(origin=vol.center() + np.array([0, 100, 50]), normal=(0.5, 0.866, 0))
#s2 = vol.slicePlane(origin=vol.center(), normal=(0.5, 0, 0.866))
#s3 = vol.slicePlane(origin=vol.center() + np.array([0, -100, -50]), normal=(1, 0, 0)) # this is 30 degree in coronal
##s3 = vol.slicePlane(origin=vol.center(), normal=(0.5, 0, 0.866)) # this is 30 degree in coronal
#
#sl.cmap('Purples_r').lighting('off').addScalarBar(title='Slice', c='w')
#s2.cmap('Blues_r').lighting('off')
#s3.cmap('Greens_r').lighting('off')
#def func(evt):
#    if not evt.actor:
#        return
#    pid = evt.actor.closestPoint(evt.picked3d, returnPointId=True)
#    txt = f"Probing:\n{precision(evt.actor.picked3d, 3)}\nvalue = {pid}"
#    sph = Sphere(evt.actor.points(pid), c='orange7').pickable(False)
#    vig = sph.vignette(txt, s=7, offset=(-150,15), font=2).followCamera()
#    plt.remove(plt.actors[-2:]).add([sph, vig]) #remove old 2 & add the new 2
#
#plt = show(vol, sl, s2, s3, __doc__, axes=9, bg='k', bg2='bb', interactive=False)
#plt.actors += [None, None]  # 2 placeholders for [sphere, vignette]
#plt.addCallback('as my mouse moves please call', func)
#interactive()
#
#from vedo.utils import versor
#
#
#from vedo import *
#
#vol = Volume(dataurl+'embryo.slc').alpha([0,0,0.5]).c('k')
#
#slices = []
#for i in range(4):
#    sl = vol.slicePlane(origin=[150,150,i*50+50], normal=(-1,0,1))
#    slices.append(sl)
#
#amap = [0, 1, 1, 1, 1]  # hide low value points giving them alpha 0
#mslices = merge(slices) # merge all slices into a single Mesh
#mslices.cmap('hot_r', alpha=amap).lighting('off').addScalarBar3D()
#
#show(vol, mslices, __doc__, axes=1)
Exemple #7
0
    # Find xyz location of all channels
    xyz_channels = ephysalign.get_channel_locations(feature, track)
    # Find brain region that each channel is located in
    brain_regions = ephysalign.get_brain_locations(xyz_channels)
    # Add extra keys to store all useful information as one bunch object
    brain_regions['xyz'] = xyz_channels
    brain_regions['lateral'] = chn_coords[:, 0]
    brain_regions['axial'] = chn_coords[:, 1]

    # Store brain regions result in channels dict with same key as in alignment
    channel_info = {key: brain_regions}
    channels.update(channel_info)

    # For plotting -> extract the boundaries of the brain regions, as well as CCF label and colour
    region, region_label, region_colour, _ = ephysalign.get_histology_regions(
        xyz_channels, depths)

    channel_depths_track = (ephysalign.feature2track(depths, feature, track) -
                            ephysalign.track_extent[0])

    # Make plot that shows the brain regions that channels pass through
    ax_regions = fig.axes[iK * 2]
    for reg, col in zip(region, region_colour):
        height = np.abs(reg[1] - reg[0])
        bottom = reg[0]
        color = col / 255
        ax_regions.bar(x=0.5,
                       height=height,
                       width=1,
                       color=color,
                       bottom=reg[0],