def _tloop_default(self): self.ts = TStepper(tse=self.dim.mats_eval, sdomain=FEUnitElem(mats_eval=self.dim.mats_eval)) # Put the time-stepper into the time-loop # n_steps = self.n_steps tloop = TLoop(tstepper=self.ts, KMAX=100, RESETMAX=self.n_restarts, tolerance=1e-8, tline=TLine(min=0.0, step=1.0 / n_steps, max=1.0)) return tloop
def example_2d(): from ibvpy.mats.mats2D.mats2D_elastic.mats2D_elastic import MATS2DElastic from ibvpy.fets.fets2D.fets2D4q import FETS2D4Q from ibvpy.fets.fets2D.fets2D4q8u import FETS2D4Q8U from ibvpy.fets.fets2D.fets2D4q9u import FETS2D4Q9U from ibvpy.fets.fets2D.fets2D9q import FETS2D9Q fets_eval = FETS2D4Q(mats_eval=MATS2DElastic(E=1., nu=0.)) xfets_eval = FETSBimaterial(parent_fets=fets_eval, int_order=3, mats_eval=MATS2DElastic(E=1., nu=0.), mats_eval2=MATS2DElastic(E=5., nu=0.)) # Discretization fe_domain = FEDomain() fe_level1 = FERefinementGrid(domain=fe_domain, fets_eval=fets_eval) fe_grid1 = FEGrid(coord_max=(3., 1., 0.), shape=(3, 1), fets_eval=fets_eval, level=fe_level1) fe_xdomain = XFESubDomain( domain=fe_domain, fets_eval=xfets_eval, #fe_grid_idx_slice = fe_grid1[1,0], fe_grid_slice=fe_grid1['X - 1.5']) ts = TS( dof_resultants=True, sdomain=fe_domain, bcond_list=[ BCDofGroup(var='u', value=1., dims=[0], get_dof_method=fe_grid1.get_right_dofs), BCDofGroup(var='u', value=0., dims=[1], get_dof_method=fe_grid1.get_right_dofs), BCDofGroup(var='u', value=0., dims=[0, 1], get_dof_method=fe_grid1.get_left_dofs), ], rtrace_list=[ # RTraceGraph(name = 'Fi,right over u_right (iteration)' , # var_y = 'F_int', idx_y = 0, # var_x = 'U_k', idx_x = 1), # RTraceDomainListField(name = 'Stress' , # var = 'sig_app', idx = 0, warp = True ), RTraceDomainListField(name='Displacement', var='u', idx=0, warp=True), RTraceDomainListField(name='Strain', var='eps', idx=0, warp=True), # RTraceDomainField(name = 'N0' , # var = 'N_mtx', idx = 0, # record_on = 'update') ]) # # # Add the time-loop control tloop = TLoop( tstepper=ts, # tolerance = 1e-4, KMAX = 4, # debug = True, RESETMAX = 2, tline=TLine(min=0.0, step=1., max=1.0)) #print "elements ",fe_xdomain.elements[0] fe_xdomain.deactivate_sliced_elems() print 'parent elems ', fe_xdomain.fe_grid_slice.elems print 'parent dofs ', fe_xdomain.fe_grid_slice.dofs print "dofmap ", fe_xdomain.elem_dof_map print "ls_values ", fe_xdomain.dots.dof_node_ls_values print 'intersection points ', fe_xdomain.fe_grid_slice.r_i print "triangles ", fe_xdomain.dots.rt_triangles print "vtk points ", fe_xdomain.dots.vtk_X print "vtk data ", fe_xdomain.dots.get_vtk_cell_data('blabla', 0, 0) print 'ip_triangles', fe_xdomain.dots.int_division print 'ip_coords', fe_xdomain.dots.ip_coords print 'ip_weigths', fe_xdomain.dots.ip_weights print 'ip_offset', fe_xdomain.dots.ip_offset print 'ip_X_coords', fe_xdomain.dots.ip_X print 'ip_ls', fe_xdomain.dots.ip_ls_values print 'vtk_ls', fe_xdomain.dots.vtk_ls_values print 'J_det ', fe_xdomain.dots.J_det_grid print tloop.eval() # #ts.setup() from ibvpy.plugins.ibvpy_app import IBVPyApp ibvpy_app = IBVPyApp(ibv_resource=ts) ibvpy_app.main()
def example_2d(): from ibvpy.api import FEDomain, FERefinementGrid, FEGrid, TStepper as TS, \ BCDofGroup, RTraceDomainListField from ibvpy.core.tloop import TLoop, TLine from ibvpy.mesh.xfe_subdomain import XFESubDomain from ibvpy.mats.mats2D.mats2D_elastic.mats2D_elastic import MATS2DElastic from ibvpy.mats.mats2D import MATS2DPlastic from ibvpy.fets.fets2D.fets2D4q import FETS2D4Q from ibvpy.fets.fets2D import FETS2D9Q from ibvpy.fets.fets2D.fets2D4q8u import FETS2D4Q8U from ibvpy.fets.fets_ls.fets_crack import FETSCrack #fets_eval = FETS2D4Q( mats_eval = MATS2DPlastic( E = 1., nu = 0. ) ) fets_eval = FETS2D4Q8U(mats_eval=MATS2DPlastic(E=1., nu=0.)) xfets_eval = FETSCrack(parent_fets=fets_eval, int_order=5, tri_subdivision=1) # Discretization fe_domain = FEDomain() fe_level1 = FERefinementGrid(domain=fe_domain, fets_eval=fets_eval) fe_grid1 = FEGrid(coord_max=(1., 1.), shape=(8, 8), fets_eval=fets_eval, level=fe_level1) #ls_function = lambda X, Y: X - Y - 0.13 ls_function = lambda X, Y: (X - 0.52)**2 + (Y - 0.72)**2 - 0.51**2 bls_function = lambda X, Y: -((X - 0.5)**2 + (Y - 0.21)**2 - 0.28**2) bls_function2 = lambda X, Y: -((X - 0.5)**2 + (Y - 0.21)**2 - 0.38**2) # design deficits: # - How to define a level set spanned over several fe_grids # (i.e. it is defined over the hierarchy of FESubDomains) # - Patching of subdomains within the FEPatchedGrid (FERefinementGrid) # - What are the compatibility conditions? # - What is the difference between FEGridLeveSetSlice # and FELSDomain? # FELSDomain is associated with a DOTS - Slice is not. # FEGrid has a multidimensional array - elem_grid # it can be accessed through this index. # it is masked by the activity map. The activity map can # be defined using slices and level sets. # the elems array enumerates the elements using the activity map. # in this way, the specialization of grids is available implicitly. # fe_xdomain = FELSDomain( domain=fe_domain, fets_eval=xfets_eval, fe_grid=fe_grid1, ls_function=ls_function, bls_function=bls_function, ) fe_tip_xdomain = FELSDomain( domain=fe_domain, fets_eval=xfets_eval, fe_grid=fe_xdomain, ls_function=bls_function, ) # deactivation must be done only after the dof enumeration has been completed fe_xdomain.deactivate_intg_elems_in_parent() fe_tip_xdomain.deactivate_intg_elems_in_parent() fe_xdomain.bls_function = bls_function2 fe_tip_xdomain.ls_function = bls_function2 # deactivation must be done only after the dof enumeration has been completed fe_xdomain.deactivate_intg_elems_in_parent() fe_tip_xdomain.deactivate_intg_elems_in_parent() # # General procedure: # 1) define the level sets with the boundaries # 2) use the bls to identify the tips of the level set # 3) use independent level sets to introduce indpendently junctions. # # get the extended dofs of the bls_elems and constrain it # cdofs = fe_tip_xdomain.elem_xdof_map.flatten() bc_list = [BCDof(var='u', dof=dof, value=0.0) for dof in cdofs] # construct the time stepper ts = TS( dof_resultants=True, sdomain=fe_domain, bcond_list=[ BCSlice( var='u', value=-0.1, dims=[1], slice=fe_grid1[:, 0, :, 0]), BCSlice( var='u', value=0., dims=[0], slice=fe_grid1[:, 0, :, 0]), BCSlice(var='u', value=0., dims=[0, 1], slice=fe_grid1[:, -1, :, -1]) ] + bc_list, rtrace_list=[ # RTDofGraph(name = 'Fi,right over u_right (iteration)' , # var_y = 'F_int', idx_y = 0, # var_x = 'U_k', idx_x = 1), RTraceDomainListField(name='Stress', var='sig_app', idx=0, warp=True), RTraceDomainListField(name='Displacement', var='u', idx=0, warp=True), # RTraceDomainField(name = 'N0' , # var = 'N_mtx', idx = 0, # record_on = 'update') ]) # do = 'print' if do == 'print': p = 'state' if p == 'grids': print('fe_xdomain.ls mask') print(fe_xdomain.ls_mask) print('fe_xdomain.idx mask') print(fe_xdomain.idx_mask) print('fe_xdomain.intg mask') print(fe_xdomain.intg_mask) print('fe_xdomain.xelems_mask') print(fe_xdomain.xelems_mask) print('fe_xdomain.xelems_grid_ix') print(fe_xdomain.xelems_grid_ix) print('fe_xdomain.ls_elem_grid') print(fe_xdomain.ls_elem_grid) print('fe_xdomain.ls_ielem_grid') print(fe_xdomain.ls_ielem_grid) print('fe_xdomain.intg_elem_grid') print(fe_xdomain.intg_elem_grid) print('fe_tip_xdomain.ls_mask`') print(fe_tip_xdomain.ls_mask) print('fe_tip_xdomain.intg_mask`') print(fe_tip_xdomain.intg_mask) print('fe_tip_xdomain.idx_mask`') print(fe_tip_xdomain.idx_mask) print('fe_tip_xdomain.xelems_mask') print(fe_tip_xdomain.xelems_mask) print('fe_tip_xdomain.xelems_grid_ix') print(fe_tip_xdomain.xelems_grid_ix) print('fe_tip_xdomain.ls_elem_grid') print(fe_tip_xdomain.ls_elem_grid) print('fe_tip_xdomain.ls_ielems_grid') print(fe_tip_xdomain.ls_ielem_grid) print('fe_tip_xdomain.intg_elem_grid') print(fe_tip_xdomain.intg_elem_grid) if p == 'maps': print('fe_xdomain.elem_dof_map') print(fe_xdomain.elem_dof_map) print('fe_tip_xdomain.elem_dof_map') print(fe_tip_xdomain.elem_dof_map) print('fe_xdomain.elems') print(fe_xdomain.elems) print('fe_tip_xdomain.elems') print(fe_tip_xdomain.elems) print('fe_xdomain.elem_X_map') print(fe_xdomain.elem_X_map) print('fe_tip_xdomain.elem_X_map') print(fe_tip_xdomain.elem_X_map) if p == 'fields': print("ls_values ", fe_xdomain.dots.dof_node_ls_values) print("tip ls_values ", fe_tip_xdomain.dots.dof_node_ls_values) print('intersection points ', fe_xdomain.ls_intersection_r) print('tip intersection points ', fe_tip_xdomain.ls_intersection_r) print("triangles ", fe_xdomain.dots.rt_triangles) print("vtk points ", fe_xdomain.dots.vtk_X) print("vtk data ", fe_xdomain.dots.get_vtk_cell_data('blabla', 0, 0)) print('ip_triangles', fe_xdomain.dots.int_division) print('ip_coords', fe_xdomain.dots.ip_coords) print('ip_weigths', fe_xdomain.dots.ip_weights) print('ip_offset', fe_xdomain.dots.ip_offset) print('ip_X_coords', fe_xdomain.dots.ip_X) print('ip_ls', fe_xdomain.dots.ip_ls_values) print('vtk_ls', fe_xdomain.dots.vtk_ls_values) print('J_det ', fe_xdomain.dots.J_det_grid) if p == 'state': # Add the time-loop control print('STATE: initial') print('fe_xdomain.dots.state_elem grid') print(fe_xdomain.dots.state_start_elem_grid) print('fe_tip_xdomain.dots.state_elem grid') print(fe_tip_xdomain.dots.state_start_elem_grid) print('fe_xdomain.dots.state_end_elem grid') print(fe_xdomain.dots.state_end_elem_grid) print('fe_tip_xdomain.dots.state_end_elem grid') print(fe_tip_xdomain.dots.state_end_elem_grid) fe_xdomain.dots.state_array[:] = 25.5 print('state_array 25', fe_xdomain.dots.state_array) fe_tip_xdomain.dots.state_array[:] = 58 bls_function3 = lambda X, Y: -((X - 0.5)**2 + (Y - 0.21)**2 - 0.58**2) fe_xdomain.bls_function = bls_function3 fe_tip_xdomain.ls_function = bls_function3 print('STATE: changed') print('fe_xdomain.dots.state_elem grid') print(fe_xdomain.dots.state_start_elem_grid) print('fe_tip_xdomain.dots.state_elem grid') print(fe_tip_xdomain.dots.state_start_elem_grid) print('fe_xdomain.dots.state_end_elem grid') print(fe_xdomain.dots.state_end_elem_grid) print('fe_tip_xdomain.dots.state_end_elem grid') print(fe_tip_xdomain.dots.state_end_elem_grid) print('state_array 25', fe_xdomain.dots.state_array.shape) print('state_array 25', fe_xdomain.dots.state_array[570:]) print('state_array 58', fe_tip_xdomain.dots.state_array.shape) elif do == 'ui': tloop = TLoop(tstepper=ts, debug=False, tolerance=1e-4, KMAX=3, RESETMAX=0, tline=TLine(min=0.0, step=1, max=1.0)) tloop.eval() from ibvpy.plugins.ibvpy_app import IBVPyApp ibvpy_app = IBVPyApp(ibv_resource=ts) ibvpy_app.main()
def example_1d(): fets_eval = FETS1D2L3U(mats_eval=MATS1DElastic(E=20.)) xfets_eval = FETSCrack(parent_fets=fets_eval, int_order=2) # Discretization fe_domain = FEDomain() fe_level1 = FERefinementGrid(domain=fe_domain, fets_eval=fets_eval) fe_grid1 = FEGrid(coord_max=(2., 0., 0.), shape=(2, ), fets_eval=fets_eval, level=fe_level1) enr = True if enr: fe_xdomain = XFESubDomain( domain=fe_domain, fets_eval=xfets_eval, #fe_grid_idx_slice = fe_grid1[1,0], fe_grid_slice=fe_grid1['X - .75']) fe_xdomain.deactivate_sliced_elems() ts = TS( dof_resultants=True, sdomain=fe_domain, bcond_list=[ BCSlice(var='u', value=-1. / 2., dims=[0], slice=fe_grid1[0, 0]), BCSlice(var='u', value=0., dims=[0], slice=fe_grid1[-1, -1]), ], rtrace_list=[ # RTDofGraph(name = 'Fi,right over u_right (iteration)' , # var_y = 'F_int', idx_y = 0, # var_x = 'U_k', idx_x = 1), RTraceDomainListField(name='Stress', var='eps', idx=0, warp=True), RTraceDomainListField(name='Displacement', var='u', idx=0, warp=True), # RTraceDomainField(name = 'N0' , # var = 'N_mtx', idx = 0, # record_on = 'update') ]) # # # Add the time-loop control tloop = TLoop(tstepper=ts, debug=True, tolerance=1e-4, RESETMAX=0, tline=TLine(min=0.0, step=1, max=1.0)) #print "elements ",fe_xdomain.elements[0] if enr: print('parent elems ', fe_xdomain.fe_grid_slice.elems) print('parent dofs ', fe_xdomain.fe_grid_slice.dofs) print("dofmap ", fe_xdomain.elem_dof_map) print("ls_values ", fe_xdomain.dots.dof_node_ls_values) print('intersection points ', fe_xdomain.fe_grid_slice.r_i) # print("triangles ", fe_xdomain.dots.int_division) print('ip_coords', fe_xdomain.dots.ip_coords) print('ip_weigths', fe_xdomain.dots.ip_weights) print('ip_offset ', fe_xdomain.dots.ip_offset) print('ip_X_coords', fe_xdomain.dots.ip_X) print('ip_ls', fe_xdomain.dots.ip_ls_values) print('vtk_X ', fe_xdomain.dots.vtk_X) print('vtk triangles ', fe_xdomain.dots.rt_triangles) print("vtk data ", fe_xdomain.dots.get_vtk_cell_data('blabla', 0, 0)) print('vtk_ls', fe_xdomain.dots.vtk_ls_values) print('J_det ', fe_xdomain.dots.J_det_grid) tloop.eval() from ibvpy.plugins.ibvpy_app import IBVPyApp ibvpy_app = IBVPyApp(ibv_resource=ts) ibvpy_app.main()
tseval = MATSProxy() E_mod_varpar = tseval.varpars['E'] E_mod_varpar.spatial_fn = MFnNDGrid(shape=(10, 10, 1), x_maxs=GridPoint(x=10, y=10)) ts = TS(tse=tseval, bcond_list=[BCDof(var='u', dof=0, value=1.)], rtrace_list=[ RTDofGraph(name='strain 0 - stress 0', var_x='eps_app', idx_x=0, var_y='sig_app', idx_y=0, record_on='update') ]) # Put the time-stepper into the time-loop # tmax = 4.0 # tmax = 0.0006 n_steps = 100 tl = TLoop(tstepper=ts, DT=tmax / n_steps, KMAX=100, RESETMAX=0, tline=TLine(min=0.0, max=tmax)) isim = IS(tloop=tl) isim.configure_traits()
# var_x = 'U_k', idx_x = 1), # RTraceDomainListField(name = 'Stress' , # var = 'sig_app', idx = 0, warp = True ), RTraceDomainListField(name='Displacement', var='u', idx=0, warp=True), # RTraceDomainField(name = 'N0' , # var = 'N_mtx', idx = 0, # record_on = 'update') ]) # # # Add the time-loop control tloop = TLoop( tstepper=ts, # tolerance = 1e-4, KMAX = 4, # debug = True, RESETMAX = 2, tline=TLine(min=0.0, step=1., max=1.0)) # print "elements ",fe_xdomain.elements[0] fe_xdomain.deactivate_sliced_elems() print('parent elems ', fe_xdomain.fe_grid_slice.elems) print('parent dofs ', fe_xdomain.fe_grid_slice.dofs) print("dofmap ", fe_xdomain.elem_dof_map) print("ls_values ", fe_xdomain.dots.dof_node_ls_values) print('intersection points ', fe_xdomain.fe_grid_slice.r_i) print("triangles ", fe_xdomain.dots.rt_triangles) print("vtk points ", fe_xdomain.dots.vtk_X) print("vtk data ", fe_xdomain.dots.get_vtk_cell_data('blabla', 0, 0)) print('ip_triangles', fe_xdomain.dots.int_division) print('ip_coords', fe_xdomain.dots.ip_coords)
def _tloop_default(self): return TLoop()