Exemple #1
0
def weight_frame(frame, nfiles=1, isNuGen=False):
    lowe_flux_service = NewNuFlux.makeFlux("IPhonda2014_spl_solmin")
    highe_flux_service = NewNuFlux.makeFlux("honda2006")
    if isNuGen: gen_ratio = 0.5
    else: gen_ratio = 0.7
    mc_weights = frame['I3MCWeightDict']
    true_neutrino = dataclasses.get_most_energetic_neutrino(frame['I3MCTree'])
    true_energy = mc_weights['PrimaryNeutrinoEnergy']
    true_zenith = true_neutrino.dir.zenith
    if true_neutrino.energy < 10000: flux_service = lowe_flux_service
    else: flux_service = highe_flux_service
    nue, numu = I3Particle.ParticleType.NuE, I3Particle.ParticleType.NuMu
    nu_nubar_genratio = gen_ratio
    if true_neutrino.pdg_encoding < 0:
        nue, numu = I3Particle.ParticleType.NuEBar, I3Particle.ParticleType.NuMuBar
        nu_nubar_genratio = 1 - nu_nubar_genratio
    if np.abs(true_neutrino.pdg_encoding) == 12:
        flux = flux_service.getFlux(nue, true_energy, numpy.cos(true_zenith))
    if np.abs(true_neutrino.pdg_encoding) == 14:
        flux = flux_service.getFlux(numu, true_energy, numpy.cos(true_zenith))
    one_weight = mc_weights['OneWeight']
    n_events = mc_weights['NEvents']
    norm = (1.0 / (n_events * nfiles * nu_nubar_genratio))
    w = norm * one_weight * flux
    return w
Exemple #2
0
    def Configure(self):
        self._dataset_type = self.GetParameter("DatasetType")
        self._n_files = self.GetParameter("DatasetNFiles")
        self._n_events_per_run = self.GetParameter("DatasetNEventsPerRun")
        self._ngen = self._n_events_per_run * self._n_files
        self._output_key = self.GetParameter("OutputKey")

        self._dataset_type = self._dataset_type.lower()

        if self._dataset_type not in ['muongun', 'nugen', 'genie']:
            raise ValueError('Unkown dataset_type: {!r}'.format(dataset_type))

        # get Honda2006
        self.honda = NewNuFlux.makeFlux("honda2006")
        self.honda.knee_reweighting_model = 'gaisserH3a_elbert'
        self.honda.relative_kaon_contribution = .91
        # get self-veto
        self.af = AtmosphericSelfVeto.AnalyticPassingFraction
        self.honda_veto_hese = self.af('conventional', veto_threshold=1.25e3)
        self.honda_veto_mese = self.af('conventional', veto_threshold=1e2)
        # get the sarcevic model for prompt neutrinos
        self.enberg = NewNuFlux.makeFlux("sarcevic_std")
        self.enberg_veto_hese = self.af('charm', veto_threshold=1.25e3)
        self.enberg_veto_mese = self.af('charm', veto_threshold=1e2)
        self.conv_flux_multiplier = 1.07
        self.prompt_flux_multiplier = .2
Exemple #3
0
def AtmosphericNuFlux(modelname='honda2006',knee=False,fluxconst=1.):
    """
    Create an Atmospheric neutrino flux

    Args:
        modelname (str): a atmospheric model
        knee (bool): ad a knee model
        fluxconst (float): scale flux by this const

    Returns (func): the requested flux. Takes energy, type and maybe cos(zenith) as parameters

    """
    nuflux = NewNuFlux.makeFlux(modelname)
    if knee:
        nuflux.knee_reweighting_model = knee

    def flux(mc_p_energy,mc_p_type,mc_p_zenith):
        mc_p_type = np.int32(mc_p_type)
        mc_p_type = conv.ConvertPrimaryFromPDG(mc_p_type)
        try:
            return fluxconst*nuflux.getFlux(mc_p_type,mc_p_energy,mc_p_zenith)
        except RuntimeError:
            if conv.IsPDGEncoded(mc_p_type,neutrino=True):
                mc_p_type = conv.ConvertPrimaryFromPDG(mc_p_type)
            else:
                mc_p_type = conv.ConvertPrimaryToPDG(mc_p_type)
            # FIXME: is this still the case?
            # the fluxes given by newnuflux are only for anti/neutrinos
            # so to calculate the total flux, there is a number of 2 necessary
            return 2*fluxconst*nuflux.getFlux(mc_p_type,mc_p_energy,mc_p_zenith)
    return flux
Exemple #4
0
 def __init__(self, context):
     super(NuGenWeightCalculator, self).__init__(context)
     try:
         from icecube import NewNuFlux
         flux = NewNuFlux.makeFlux('honda2006')
     except ImportError:
         flux = None
     self.AddParameter(
         "Flux",
         "Neutrino flux model: an object with a member function getFlux(particleType, energy, cos_theta) that returns fluxes per particle type in 1/(GeV cm^2 sr s) (e.g. an instance of NewNuFlux.FluxFunction)",
         flux)
Exemple #5
0
def atm_flux(I3MCWeightDict):
    flux = NewNuFlux.makeFlux('honda2006')
    flux.knee_reweighting_model = "gaisserH4a_elbert"
    ptype = I3MCWeightDict["PrimaryNeutrinoType"]
    energy = I3MCWeightDict["PrimaryNeutrinoEnergy"]
    cos_theta = np.cos(I3MCWeightDict["PrimaryNeutrinoZenith"])
    type_weight = 0.5
    nevts = I3MCWeightDict["NEvents"]
    oneweight = I3MCWeightDict["OneWeight"]
    return flux.getFlux(ptype, energy,
                        cos_theta) * oneweight / (type_weight * nevts)
Exemple #6
0
def atmo_weight(frame):
    if reco_q.is_data(frame):
        return True
    flux = NewNuFlux.makeFlux('honda2006')
    flux.knee_reweighting_model = "gaisserH4a_elbert"
    conv = frame['correct_ow'].value * flux.getFlux(
        frame['I3MCWeightDict']['PrimaryNeutrinoType'],
        frame['MCPrimary1'].energy, np.cos(frame['MCPrimary1'].dir.zenith))
    print('conv {}'.format(conv))
    frame.Put("conv", dataclasses.I3Double(conv))
    return
def get_fluxes_and_names(neutrinoflux_models='all',
                         nnflux_models='all',
                         measured_models='all'):
    if neutrinoflux_models == 'all':
        neutrinoflux_models = NEUTRINOFLUX_MODELS
    elif neutrinoflux_models is None:
        neutrinoflux_models = []

    if nnflux_models == 'all':
        nnflux_models = NNFLUX_MODELS
    elif nnflux_models is None:
        nnflux_models = []

    if measured_models == 'all':
        measured_models = MEASURED_MODELS
    elif measured_models is None:
        measured_models = []

    fluxes = []
    flux_names = []
    for model in neutrinoflux_models:
        model_type = model[1]
        if model_type == 'conv':
            fluxes.append(
                neutrinoflux.ConventionalNeutrinoFluxWithKnee(model[0]))
        if model_type == 'prompt':
            fluxes.append(neutrinoflux.PromptNeutrinoFluxWithKnee(model[0]))
        if model_type == 'astro':
            fluxes.append(neutrinoflux.AstroNeutrinoFlux(model[0]))
        flux_name = '{}_{}_nflux'.format(model[0], model_type)
        flux_name = flux_name.replace('-', '_')
        flux_names.append(flux_name)

    for model in nnflux_models:
        model_type = model[2]
        flux = nn.makeFlux(model[0])
        for knee_rew in model[1]:
            flux.knee_reweighting_model = knee_rew
            flux_name = '{}_{}_{}_NNFlux'.format(model[0], knee_rew,
                                                 model_type)
            flux_name.replace('_none', '')

            fluxes.append(flux)
            flux_names.append(flux_name)

    for model in measured_models:
        fluxes.append(makeFlux(model))
        flux_names.append(model)

    return fluxes, flux_names
ra79_sim, sindec79_sim , ra79_data, sindec79_data, ra79_true, sindec79_true, energy79_true, muex79_sim, muex79_data, sigma79_sim, sigma79_data, OneWeight_IC79, dpsi_IC79 = cache.load (filename_pickle+"sirin_IC79/coords.pickle")

nch79_sim, nch79_data = cache.load (filename_pickle+"sirin_IC79/NCh.pickle")

ra59_sim, sindec59_sim , ra59_data, sindec59_data, ra59_true, sindec59_true, energy59_true, mue59_sim, mue59_data, sigma59_sim, sigma59_data, OneWeight_IC59, dpsi_IC59 = cache.load (filename_pickle+"sirin_IC59/coords.pickle")

#nch59_sim, nch59_data = cache.load (filename_pickle+"IC59/NCh.pickle")

ra40_sim, sindec40_sim , ra40_data, sindec40_data, ra40_true, sindec40_true, energy40_true, mue40_sim, mue40_data, sigma40_sim, sigma40_data, OneWeight_IC40, dpsi_IC40 = cache.load (filename_pickle+"sirin_IC40/coords.pickle")

#nch40_sim, nch40_data = cache.load (filename_pickle+"IC40/NCh.pickle")
#End Loading Zone.#


#Weighting
honda = NewNuFlux.makeFlux('honda2006')
honda.knee_reweighting_model = 'gaisserH3a_elbert' 
flux = honda.getFlux

#For Skylab I only need OneWeight (I think?) I'll keep the function for posterity, but let's just keep oneweight:

    ### Pull Correction ###
#A polynomial exists to make sure dpsi and sigma have the same median. This is different for each year.
#The polynomial was done with incorrect assumptions from IC40 - IC86I- to fix this, we multiply by the following factor:

#Now these are all handled courtesy of their respective prepdata folder
#pullCorrect = 1./1.1774
#
### for IC40:
##https://wiki.icecube.wisc.edu/index.php/IC-40_PS_Cut_Variables
#def RescaledSigma_IC40_SplineMPE( Sigma, Energy):
def read_from_i3_file(file_name, type_flags, q, generator, flux_name='honda2006', sampling_factor=1.0, geo=None):
    is_data = bool(type_flags & 0x1)
    is_mono = bool((type_flags >> 1) & 0x1)
    flux = NewNuFlux.makeFlux(flux_name).getFlux
    load('millipede')
    try:
        class MCMuonInfoModule(icetray.I3ConditionalModule):
            def __init__(self, context):
                super(MCMuonInfoModule, self).__init__(context)
                self.n = None
            def Configure(self):
                pass
            def DAQ(self, frame):
                pass
            def Physics(self, frame):
                pass
        def process_frame(self, frame):
            if self.n == None:
                self.n = 0
            else:
                self.n += 1
            process_DAQ(frame, q, self.n, type_flags, flux, generator)
        if is_data:
            MCMuonInfoModule.Physics = process_frame
        else:
            MCMuonInfoModule.DAQ = process_frame
        def cut_on_length(frame):
            global passed_length_cut
            points = VHESelfVeto.IntersectionsWithInstrumentedVolume(frame['I3Geometry'], frame['MPEFit_TT'])
            if len(points) < 2:
                return False
            return abs(points[0] - points[1]) >= 600
        def add_time_window(frame):
            window = dataclasses.I3TimeWindow(*(lambda x: (min(x)-1000, max(x)+1000))([p.time for l in frame[pulse_series].apply(frame).values() for p in l]))
            frame[pulse_series + 'TimeRange'] = window
            return True
        pulse_series = 'TTPulses'
        tray = I3Tray()
        if geo is not None:
            FilenameList = [geo]
        else:
            FilenameList = []
        FilenameList.append(file_name)
        tray.Add("I3Reader", "my_reader", FilenameList=FilenameList)
        tray.Add(lambda frame: frame.Has('I3MCTree'))
        tray.Add(lambda frame: frame.Has('MMCTrackList'))
        if is_data:
            tray.Add(lambda frame: frame.Has('MPEFit_TT'))
            tray.Add(lambda frame: frame.Has(pulse_series))
        tray.Add(lambda frame: (frame.Stop != icetray.I3Frame.Physics) or (random.random() <= sampling_factor))
        if is_data:
            tray.Add(cut_on_length)
            tray.Add(add_time_window)
            table_base = os.path.expandvars('$I3_DATA/photon-tables/splines/emu_%s.fits')
            muon_service = photonics_service.I3PhotoSplineService(table_base % 'abs', table_base % 'prob', 0)
            table_base = os.path.expandvars('$I3_DATA/photon-tables/splines/ems_spice1_z20_a10.%s.fits')
            cascade_service = photonics_service.I3PhotoSplineService(table_base % 'abs', table_base % 'prob', 0)                                                                                                        
            tray.Add('MuMillipede', 'millipede_highenergy',
                    MuonPhotonicsService=muon_service, CascadePhotonicsService=cascade_service,
                    PhotonsPerBin=15, MuonRegularization=0, ShowerRegularization=0,
                    MuonSpacing=0, ShowerSpacing=10, SeedTrack='MPEFit_TT',
                    Output='MillipedeHighEnergy', Pulses=pulse_series)

        tray.Add(MCMuonInfoModule)
        print 'Executing tray'
        tray.Execute()
        tray.Finish()
        print 'Finished tray'
        print 'Done with i3 file'
    except Exception as e:
        print e
Exemple #10
0
def createPickleFile(data_type):

    # Setting the directory, listing the files
    indir = os.path.join(i3_basedir, data_type)
    filenames_all = [
        os.path.join(indir, f) for f in os.listdir(indir)
        if f.endswith('.i3.bz2')
    ]

    # Go over the files once to see if they can be used
    # This step can be very slow. Skip it if you have checked this once!
    filename_list = checkFiles(filenames_all)
    total_files = len(filename_list) * 1.0

    file_counter = 0
    aux = 1

    # Counter of events in the table
    tc = 0

    if not 'IC86' in data_type and not 'corsika' in data_type:
        from icecube import NewNuFlux
        import vacuumOscillations as vacOsc
        probCalculator = vacOsc.OscProb()
        flux_model = 'honda2006'
        atmFlux_jason06 = NewNuFlux.makeFlux(flux_model)
        atmFlux_jason12 = NewNuFlux.makeFlux('honda2012_spl_solmin')

        spectral_index = 0.05

    # Information stored for both data and MC
    arr_size = 300000  #Max array size defined. Make sure it's enough for you.
    array_reco_energy = np.zeros(arr_size)
    array_reco_cascade = np.zeros(arr_size)
    array_reco_track = np.zeros(arr_size)
    array_reco_zenith = np.zeros(arr_size)
    array_reco_hlcz = np.zeros(arr_size)

    if 'IC86' in data_type:
        array_eventid = np.zeros(arr_size)

    if not 'IC86' in data_type and not 'corsika' in data_type:
        array_mc_energy = np.zeros(arr_size)
        array_mc_zenith = np.zeros(arr_size)
        array_mc_weight = np.zeros(arr_size)
        array_mc_weight_ej06 = np.zeros(arr_size)
        array_mc_weight_muj06 = np.zeros(arr_size)
        array_mc_weight_ej12 = np.zeros(arr_size)
        array_mc_weight_muj12 = np.zeros(arr_size)
        array_mc_oneweight = np.zeros(arr_size)
        array_mc_interaction = np.zeros(arr_size)
        array_mc_particle_type = np.zeros(arr_size)
        array_mc_maxial_res_weight = np.zeros([arr_size, 2])
        array_mc_maxial_qe_weight = np.zeros([arr_size, 2])


        interactions_directory = \
           '/afs/ifh.de/user/y/yanezjua/scratch/analysis-results/systematic-checks/crossSections/interaction_dict/'
        if '12' in data_type:
            interactions_lib = pickle.load(
                open(interactions_directory + 'NuEIntDict3.pckl'))
        elif '14' in data_type:
            interactions_lib = pickle.load(
                open(interactions_directory + 'NuMuIntDict3.pckl'))
        elif '16' in data_type:
            interactions_lib = pickle.load(
                open(interactions_directory + 'NuTauIntDict3.pckl'))

    tables_outfile = os.path.join(tables_outdir,
                                  data_type.split('/')[-1] + '.pckl')
    print 'Saving to ', tables_outfile
    if os.path.isfile(tables_outfile):
        print 'Tables already exist. Press a key to redo.\n', tables_outfile
        raw_input()

    for one_file in filename_list:
        print one_file
        file_counter += 1
        if file_counter % aux == 0:
            print 'File : +' "%i" % file_counter

        infile = dataio.I3File(one_file)
        for frame in infile:
            if frame.Stop != frame.Physics:
                continue

            # Observables and additional info
            muon = frame[muon_track]
            hadrons = frame[hadronic_cascade]
            hlcz = frame[fhlc_name]

            # Weighting
            if 'IC86' in data_type:
                weight_osc = 1.
                weight_nosc = 1
            elif 'corsika' in data_type:
                print 'Weighting in CORSIKA is way too complicated now. Did not implement'
                exit()
            else:
                true_neutrino = frame[true_nu_name]

                # Retrieve interaction and particle
                interaction_type = frame['I3MCWeightDict']['InteractionType']
                particle_type = true_neutrino.pdg_encoding
                nu_energy = true_neutrino.energy
                nu_zenith = true_neutrino.dir.zenith
                nu_theta = pi - nu_zenith
                nu_azimuth = true_neutrino.dir.azimuth

                # Calculate the atm. weight (HONDA)
                norm = (10**9 *frame['I3MCWeightDict']['OneWeight']*\
                            icetray.I3Units.GeV*icetray.I3Units.cm2 * icetray.I3Units.sr)/ \
                            (frame['I3MCWeightDict']['NEvents']* total_files/2.)

                if particle_type > 0:
                    my_nuetype = dataclasses.I3Particle.ParticleType.NuE
                    my_numutype = dataclasses.I3Particle.ParticleType.NuMu
                else:
                    my_nuetype = dataclasses.I3Particle.ParticleType.NuEBar
                    my_numutype = dataclasses.I3Particle.ParticleType.NuMuBar


                nue_jason06 = nu_energy**(spectral_index)* norm *\
                    atmFlux_jason06.getFlux(my_nuetype, nu_energy, cos(nu_theta))/\
                    (icetray.I3Units.GeV*icetray.I3Units.cm2*icetray.I3Units.s*icetray.I3Units.sr)
                nue_jason12 = nu_energy**(spectral_index)* norm *\
                    atmFlux_jason12.getFlux(my_nuetype, nu_energy, cos(nu_theta))/\
                    (icetray.I3Units.GeV*icetray.I3Units.cm2*icetray.I3Units.s*icetray.I3Units.sr)
                if nue_jason12 == 0.:
                    nue_jason12 = nue_jason06

                numu_jason06 = nu_energy**(spectral_index)* norm *\
                    atmFlux_jason06.getFlux(my_numutype, nu_energy, cos(nu_theta))/\
                    (icetray.I3Units.GeV*icetray.I3Units.cm2*icetray.I3Units.s*icetray.I3Units.sr)
                numu_jason12 = nu_energy**(spectral_index)* norm *\
                    atmFlux_jason12.getFlux(my_numutype, nu_energy, cos(nu_theta))/\
                    (icetray.I3Units.GeV*icetray.I3Units.cm2*icetray.I3Units.s*icetray.I3Units.sr)

                # numu_steven = nu_energy**(spectral_index)*norm*\
                #               steven_flux.MuFlux(nu_energy, cos(nu_theta))/\
                #               (nu_energy*\
                #                icetray.I3Units.GeV*icetray.I3Units.m2*icetray.I3Units.s*icetray.I3Units.sr)
                # nue_steven  = nu_energy**(spectral_index)*norm*\
                #               steven_flux.EFlux(nu_energy, cos(nu_theta))/\
                #               (nu_energy*\
                #                icetray.I3Units.GeV*icetray.I3Units.m2*icetray.I3Units.s*icetray.I3Units.sr)

                if numu_jason12 == 0.:
                    numu_jason12 = numu_jason06

                # Also add Ma variations only for CC interactions (NC interactions didn't play a role)
                if interaction_type == 1 and 'nu' in data_type:  # Cannot do this for nugen
                    axial_mass_qe, axial_mass_res = \
                        getMaVariations(idict = interactions_lib,\
                                            energy = nu_energy,\
                                            pdg    = int(particle_type),\
                                            xsecE  = frame['I3MCWeightDict']['Crosssection']/nu_energy)
                else:
                    axial_mass_res = np.zeros(2)
                    axial_mass_qe = np.zeros(2)

            array_reco_energy[tc] = muon.energy + hadrons.energy
            array_reco_cascade[tc] = hadrons.energy
            array_reco_track[tc] = muon.energy
            array_reco_zenith[tc] = muon.dir.zenith
            array_reco_hlcz[tc] = hlcz.pos.z

            if 'IC86' in data_type:
                array_eventid[tc] = frame['I3EventHeader'].event_id

            if not 'IC86' in data_type and not 'corsika' in data_type:
                array_mc_energy[tc] = nu_energy
                array_mc_zenith[tc] = nu_zenith
                array_mc_oneweight[tc] = norm
                array_mc_weight_ej06[tc] = nue_jason06
                array_mc_weight_muj06[tc] = numu_jason06
                array_mc_weight_ej12[tc] = nue_jason12
                array_mc_weight_muj12[tc] = numu_jason12
                array_mc_interaction[tc] = interaction_type
                array_mc_particle_type[tc] = particle_type
                array_mc_maxial_res_weight[tc, :] = axial_mass_res
                array_mc_maxial_qe_weight[tc, :] = axial_mass_qe

            tc += 1

    # All files are done
    if not 'IC86' in data_type and not 'corsika' in data_type:
        cc_bool = array_mc_interaction == 1
        nc_bool = array_mc_interaction == 2
        array_dict = {'CC': {}, 'NC': {}}

        # Charged current
        array_dict['CC']['reco_energy'] = array_reco_energy[cc_bool]
        array_dict['CC']['reco_cascade'] = array_reco_cascade[cc_bool]
        array_dict['CC']['reco_track'] = array_reco_track[cc_bool]
        array_dict['CC']['reco_zenith'] = array_reco_zenith[cc_bool]
        array_dict['CC']['oneweight'] = array_mc_oneweight[cc_bool]
        array_dict['CC']['weight_ej06'] = array_mc_weight_ej06[cc_bool]
        array_dict['CC']['weight_ej12'] = array_mc_weight_ej12[cc_bool]
        array_dict['CC']['weight_muj06'] = array_mc_weight_muj06[cc_bool]
        array_dict['CC']['weight_muj12'] = array_mc_weight_muj12[cc_bool]
        array_dict['CC']['energy'] = array_mc_energy[cc_bool]
        array_dict['CC']['zenith'] = array_mc_zenith[cc_bool]
        array_dict['CC']['ptype'] = array_mc_particle_type[cc_bool]
        array_dict['CC']['ma_qe'] = array_mc_maxial_qe_weight[cc_bool]
        array_dict['CC']['ma_res'] = array_mc_maxial_res_weight[cc_bool]
        array_dict['CC']['hlcz'] = array_reco_hlcz[cc_bool]

        # Neutral current
        array_dict['NC']['reco_energy'] = array_reco_energy[nc_bool]
        array_dict['NC']['reco_cascade'] = array_reco_cascade[nc_bool]
        array_dict['NC']['reco_track'] = array_reco_track[nc_bool]
        array_dict['NC']['reco_zenith'] = array_reco_zenith[nc_bool]
        array_dict['NC']['oneweight'] = array_mc_oneweight[nc_bool]
        array_dict['NC']['weight_ej06'] = array_mc_weight_ej06[nc_bool]
        array_dict['NC']['weight_ej12'] = array_mc_weight_ej12[nc_bool]
        array_dict['NC']['weight_muj06'] = array_mc_weight_muj06[nc_bool]
        array_dict['NC']['weight_muj12'] = array_mc_weight_muj12[nc_bool]
        array_dict['NC']['energy'] = array_mc_energy[nc_bool]
        array_dict['NC']['zenith'] = array_mc_zenith[nc_bool]
        array_dict['NC']['ptype'] = array_mc_particle_type[nc_bool]
        array_dict['NC']['hlcz'] = array_reco_hlcz[nc_bool]

    else:
        array_dict = {
            'reco_energy': array_reco_energy[:tc],
            'reco_cascade': array_reco_cascade[:tc],
            'reco_track': array_reco_track[:tc],
            'reco_zenith': array_reco_zenith[:tc],
            'hlcz': array_reco_hlcz[:tc]
        }
    if 'IC86' in data_type:
        array_dict['eventid'] = array_eventid[:tc]

    pickle.dump(array_dict, open(tables_outfile, 'w'))

    print 'TOTAL EVENTS KEPT (unweighted): ', tc
Exemple #11
0
    ptype = phy_frame['MCPrimary'].pdg_encoding
    weight = flux(energy, ptype) / generator(energy, ptype)
    print('Corsika Weight {}'.format(weight))
    phy_frame.Put("corsika_weight", dataclasses.I3Double(weight))
    return


def add_weighted_primary(phy_frame):
    if reco_q.is_data(phy_frame):
        return True
    if not 'MCPrimary' in phy_frame.keys():
        get_weighted_primary(phy_frame, MCPrimary='MCPrimary')
    return


flux_conv = NewNuFlux.makeFlux('honda2006')
flux_conv.knee_reweighting_model = "gaisserH4a_elbert"


def atmo_weight(frame):
    if reco_q.is_data(frame):
        return True
    if 'I3MCWeightDict' not in phy_frame:
        return
    conv = frame['I3MCWeightDict']['OneWeight'] * flux_conv.getFlux(
        frame['I3MCWeightDict']['PrimaryNeutrinoType'],
        frame['MCPrimary1'].energy, np.cos(frame['MCPrimary1'].dir.zenith))
    frame.Put("conv", dataclasses.I3Double(conv))
    return

Exemple #12
0
from icecube.icetray import I3Units
import icecube.weighting.weighting as weighting
from icecube.weighting.weighting import from_simprod
load('millipede')

import numpy as np
import pickle
import histogram

_pulse_series = 'TTPulses'
_reco_track = 'MPEFit_TT'

# Initialize the flux and generator for the sample
# Parameters below are for /data/ana/IC79/numu_forward_folding/sim/Alfa/Lnu/IC86/eff0.9900/
_flux_name = 'honda2006'
_flux = NewNuFlux.makeFlux(_flux_name).getFlux
_generator = weighting.NeutrinoGenerator(1e5, 200, 1e9, 2, 'NuMu',
    InjectionMode = 'Surface',
    ZenithMin = 80*I3Units.deg,
    ZenithMax = 180*I3Units.deg,
    AzimuthMin = 0*I3Units.deg,
    AzimuthMax = 360*I3Units.deg,
    CylinderRadius = 800*I3Units.meter,
    CylinderHeight = 1000.*I3Units.m
)

# Initialize photon table services
table_base = os.path.expandvars('$I3_DATA/photon-tables/splines/emu_%s.fits')
_muon_service = photonics_service.I3PhotoSplineService(table_base % 'abs', table_base % 'prob', 0)
table_base = os.path.expandvars('$I3_DATA/photon-tables/splines/ems_spice1_z20_a10.%s.fits')
_cascade_service = photonics_service.I3PhotoSplineService(table_base % 'abs', table_base % 'prob', 0)