def __init__(self): self.horizon = 400 self.gamma = .95 self._theta = 0. self._theta_dot = 0. self._g = 9.8 self._m = 2. self._M = 8. self._l = .5 self._alpha = 1. / (self._m + self._M) self._noise = 10. self._angle_max = np.pi / 2. self.max_velocity = np.inf self._dt = 0.1 # gym attributes self.viewer = None high = np.array([self._angle_max, self.max_velocity]) self.observation_space = spaces.Box(low=-high, high=high) self.action_space = fqispaces.DiscreteValued([-50, 0, 50], decimals=0) # initialize state self.seed() self.reset()
def __init__(self): self.horizon = 100 self.gamma = .95 self.max_action = 5 self._g = 9.81 self._M1 = self._M2 = 1 self._L1 = self._L2 = 1 self._mu1 = self._mu2 = .01 self._dt = .1 # gym attributes self.viewer = None high = np.array([np.inf, np.inf, np.inf, np.inf]) self.observation_space = spaces.Box(low=-high, high=high) self.action_space = fqispaces.DiscreteValued([-5, 5], decimals=0) # evaluation initial states self.initial_states = np.zeros((41, 4)) self.initial_states[:, 0] = np.linspace(-2, 2, 41) # initialize state self.seed() self.reset()
def __init__(self): self.horizon = 100 self.gamma = 0.95 self.max_pos = 1. self.max_velocity = 3. self._g = 9.81 self._m = 1 self._dt = .1 # gym attributes self.viewer = None high = np.array([self.max_pos, self.max_velocity]) self.observation_space = spaces.Box(low=-high, high=high) self.action_space = fqispaces.DiscreteValued([-4., 4.], decimals=0) # evaluation initial states self.initial_states = np.zeros((289, 2)) cont = 0 for i in range(-8, 9): for j in range(-8, 9): self.initial_states[cont, :] = [0.125 * i, 0.375 * j] cont += 1 # initialize state self.seed() self.reset()
def __init__(self, **kwargs): self.horizon = 100 self.gamma = 0.9 self._m = 1. self._l = 1. self._g = 9.8 self._mu = 0.01 self._dt = 0.02 # gym attributes self.viewer = None high = np.array([np.inf, np.inf]) self.observation_space = spaces.Box(low=-high, high=high) self.action_space = fqispaces.DiscreteValued([-5, 0, 5], decimals=5) # initialize state self.seed() self.reset()
def __init__(self): self.horizon = 300 self.gamma = 0.95 self.max_pos = 1. self.max_velocity = 3. self._g = 9.81 self._m = 1 self._dt = .1 # gym attributes self.viewer = None high = np.array([self.max_pos, self.max_velocity]) self.observation_space = spaces.Box(low=-high, high=high) self.action_space = fqispaces.DiscreteValued([-4., 4.], decimals=0) # initialize state self.seed() self.reset()