def __init__(self, name, param): dataprocess.C2dImageTask.__init__(self, name) # Create parameters class if param is None: self.setParam(PointRendParam()) else: self.setParam(copy.deepcopy(param)) self.threshold = 0.5 self.MODEL_NAME_CONFIG = "pointrend_rcnn_R_50_FPN_3x_coco" self.MODEL_NAME = "model_final_3c3198" self.path_to_config = "/PointRend_git/configs/InstanceSegmentation/" + self.MODEL_NAME_CONFIG + ".yaml" self.path_to_model = "/models/" + self.MODEL_NAME + ".pkl" self.folder = os.path.dirname(os.path.realpath(__file__)) self.cfg = get_cfg() add_pointrend_config(self.cfg) self.cfg.merge_from_file(self.folder + self.path_to_config) self.cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = self.threshold self.cfg.MODEL.WEIGHTS = self.folder + self.path_to_model self.loaded = False self.deviceFrom = "" # add output + set data type self.setOutputDataType(core.IODataType.IMAGE_LABEL, 0) self.addOutput(dataprocess.CImageIO(core.IODataType.IMAGE)) self.addOutput(dataprocess.CGraphicsOutput())
def __init__(self, name, param): dataprocess.C2dImageTask.__init__(self, name) if param is None: self.setParam(MaskRcnnParam()) else: self.setParam(copy.deepcopy(param)) # get and set config model self.threshold = 0.5 self.cfg = None self.model_link = "COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml" self.predictor = None # add output + set data type self.setOutputDataType(core.IODataType.IMAGE_LABEL, 0) self.addOutput(dataprocess.CImageIO(core.IODataType.IMAGE)) self.addOutput(dataprocess.CGraphicsOutput())
def __init__(self, name, param): dataprocess.C2dImageTask.__init__(self, name) self.model = None self.names = None self.colors = None self.update = False # Detect if we have a GPU available self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Add graphics output self.addOutput(dataprocess.CGraphicsOutput()) # Add numeric output self.addOutput(dataprocess.CNumericIO()) # Create parameters class if param is None: self.setParam(InferYoloV5Param()) else: self.setParam(copy.deepcopy(param))
def __init__(self, name, param): dataprocess.C2dImageTask.__init__(self, name) self.model = None self.class_names = [] # Detect if we have a GPU available self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Remove graphics input self.removeInput(1) # Add graphics output self.addOutput(dataprocess.CGraphicsOutput()) # Add numeric output self.addOutput(dataprocess.CNumericIO()) # Create parameters class if param is None: self.setParam(MnasnetParam()) else: self.setParam(copy.deepcopy(param))
def __init__(self, name, param): dataprocess.C2dImageTask.__init__(self, name) if param is None: self.setParam(TridentnetParam()) else: self.setParam(copy.deepcopy(param)) # get and set config model self.folder = os.path.dirname(os.path.realpath(__file__)) self.MODEL_NAME_CONFIG = "tridentnet_fast_R_101_C4_3x" self.MODEL_NAME = "model_final_164568" self.cfg = get_cfg() add_tridentnet_config(self.cfg) self.cfg.merge_from_file(self.folder + "/TridentNet_git/configs/" + self.MODEL_NAME_CONFIG + ".yaml") self.cfg.MODEL.WEIGHTS = self.folder + "/models/" + self.MODEL_NAME + ".pkl" self.loaded = False self.deviceFrom = "" # add output self.addOutput(dataprocess.CGraphicsOutput())
def __init__(self, name, param): dataprocess.C2dImageTask.__init__(self, name) # Add graphics output self.addOutput(dataprocess.CGraphicsOutput()) # Add numeric output self.addOutput(dataprocess.CNumericIO()) # Network members self.net = None self.class_names = [] # Create parameters class if param is None: self.setParam(EmotionFerPlusParam()) else: self.setParam(copy.deepcopy(param)) # Load class names model_folder = os.path.dirname(os.path.realpath(__file__)) + "/models" with open(model_folder + "/class_names") as f: for row in f: self.class_names.append(row[:-1])
def __init__(self, name, param): dataprocess.C2dImageTask.__init__(self, name) self.model = None self.class_names = [] # Detect if we have a GPU available self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Remove graphics input self.removeInput(1) # Segmentation mask output self.setOutputDataType(core.IODataType.IMAGE_LABEL, 0) # Result image self.addOutput(dataprocess.CImageIO(core.IODataType.IMAGE)) # Add graphics output self.addOutput(dataprocess.CGraphicsOutput()) # Add numeric output self.addOutput(dataprocess.CNumericIO()) # Create parameters class if param is None: self.setParam(MaskRcnnParam()) else: self.setParam(copy.deepcopy(param))
def __init__(self, name, param): dataprocess.C2dImageTask.__init__(self, name) # Add input/output of the process here self.setOutputDataType(core.IODataType.IMAGE_LABEL, 0) self.addOutput(dataprocess.CImageIO(core.IODataType.IMAGE)) # Add graphics output self.addOutput(dataprocess.CGraphicsOutput()) self.net = None self.class_names = [] # Create parameters class if param is None: self.setParam(InferYolactParam()) else: self.setParam(copy.deepcopy(param)) # Load class names model_folder = os.path.dirname(os.path.realpath(__file__)) + "/models" with open(model_folder + "/Coco_names.txt") as f: for row in f: self.class_names.append(row[:-1])
def __init__(self, name, param): dataprocess.C2dImageTask.__init__(self, name) # Create parameters class if param is None: self.setParam(RetinanetParam()) else: self.setParam(copy.deepcopy(param)) # get and set config model self.LINK_MODEL = "COCO-Detection/retinanet_R_101_FPN_3x.yaml" self.threshold = 0.5 self.cfg = get_cfg() self.cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = self.threshold self.cfg.merge_from_file(model_zoo.get_config_file( self.LINK_MODEL)) # load config from file(.yaml) self.cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url( self.LINK_MODEL) # download the model (.pkl) self.loaded = False self.deviceFrom = "" # add output self.addOutput(dataprocess.CGraphicsOutput())
def __init__(self, name, param): dataprocess.C2dImageTask.__init__(self, name) # Create parameters class if param is None: self.setParam(DensePoseParam()) else: self.setParam(copy.deepcopy(param)) # get and set config model self.folder = os.path.dirname(os.path.realpath(__file__)) self.MODEL_NAME_CONFIG = "densepose_rcnn_R_50_FPN_s1x" self.MODEL_NAME = "model_final_162be9" self.cfg = get_cfg() add_densepose_config(self.cfg) self.cfg.merge_from_file(self.folder + "/DensePose_git/configs/"+self.MODEL_NAME_CONFIG+".yaml") # load densepose_rcnn_R_101_FPN_d config from file(.yaml) self.cfg.MODEL.WEIGHTS = self.folder + "/models/"+self.MODEL_NAME+".pkl" # load densepose_rcnn_R_101_FPN_d config from file(.pkl) self.loaded = False self.deviceFrom = "" # add output graph self.addOutput(dataprocess.CGraphicsOutput())
def __init__(self, name, param): dataprocess.C2dImageTask.__init__(self, name) # Add graphics output self.addOutput(dataprocess.CGraphicsOutput()) # Add numeric output self.addOutput(dataprocess.CNumericIO()) # Create parameters class if param is None: self.setParam(CovidNetParam()) else: self.setParam(copy.deepcopy(param)) param = self.getParam() self.covid_model = CovidNet(model_path=param.model_path) # Load class names self.class_names = [] class_names_path = os.path.dirname(os.path.realpath(__file__)) + "/models/class_names" with open(class_names_path) as f: for row in f: self.class_names.append(row[:-1])
def __init__(self, name, param): dataprocess.C2dImageTask.__init__(self, name) if param is None: self.setParam(KeyptsRcnnParam()) else: self.setParam(copy.deepcopy(param)) # get and set config model self.LINK_MODEL = "COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x.yaml" self.cfg = get_cfg() self.threshold = 0.5 self.cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = self.threshold self.cfg.merge_from_file(model_zoo.get_config_file( self.LINK_MODEL)) # load config from file(.yaml) self.cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url( self.LINK_MODEL) # download the model (.pkl) self.loaded = False self.deviceFrom = "" # add output self.addOutput(dataprocess.CGraphicsOutput()) # keypoint threshold self._KEYPOINT_THRESHOLD = 0.05