def get_image_resized(background, width, height):
    # Simple protection
    if width > 5000 or height > 5000:
        return "TOO BIG", 403

    if width == 0 or height == 0:
        return "INVALID DIMENSIONS", 400

    filename = os.path.basename(background)
    filename_without_extension, extension = os.path.splitext(filename)

    target = filename_without_extension + '-' + str(width) + 'x' + str(
        height) + extension
    dest_path = settings.backgrounds_folder + '/' + target

    if not os.path.exists(dest_path):
        resize_image(background,
                     dest_path,
                     format='jpg',
                     quality=75,
                     width=width,
                     height=height,
                     enlarge=True,
                     mode='crop')

    return send_file(dest_path)
def generate_miniatures(path, user_id):
    user_id = str(user_id)
    for size in miniatures_sizes:
        dest_path = settings.avatars_folder + '/' + user_id + '-' + str(
            size) + '.png'
        resize_image(path,
                     dest_path,
                     format='png',
                     width=size,
                     height=size,
                     enlarge=True)
Exemple #3
0
 def __call__(self, image_rois):
     # TODO: histogram equalization per channel
     # TODO: cv2
     img = Image.open(image_rois[0])
     img_path = os.path.join(self.features_path,
                             os.path.basename(image_rois[0]))
     image.resize_image(img, (conf.image_size[0] // 2,
                              conf.image_size[1] // 2))[0].save(img_path)
     feature_file_path = self.features_path + "/val.txt"
     with open(feature_file_path, "a+") as feature_file:
         feature_file.write(img_path[len(self.features_path):])
         feature_file.write("\n")
def _down_file(photo,folder=None):
	try:
		url = photo.getURL(PHOTO_SIZE,'source')
	except:
		return 0
	
	if folder == None:
		fpath = './data/photos/'
	else:
		fpath = './data/photos/%s/%s/' % (LICENSES[int(photo.license)],folder)

	if not os.path.exists(fpath):
		os.makedirs(fpath)

	fext = url.split('.')[-1]
	fname = '%s.%s' % (photo.title,fext)
	fsavename = '%s%s' % (fpath,fname)

	
	
	# 检查是否有缓存
	cache_key = photo.id
	
	try:
		im = imagecache.get(cache_key)
		
		# 检查最终文件是否存在
		exist_count = os.path.exists(fsavename)
		
		if (im != None and exist_count):
			return 3
		
		if(im == None):
			if exist_count > 0:
				fname = '%s-%s.%s' % (photo.title,exist_count+1,fext)
				fsavename = '%s%s' % (fpath,fname)
			url_opener.retrieve(url,fsavename)	
			im = Image.open(fsavename)
			imagecache.set(cache_key,im)
					
		if SIZE != None:
			new_size = SIZE
		else:
			new_size = im.size
			
		image.resize_image(im,fsavename,new_size,'flickr')
	except:
		return 2
	return 1
Exemple #5
0
def parse_test(
    root, 
    dir_output, 
    extensions, 
    image_height=256,
    image_width=256,
    image_channels=3,
    resize_mode='squash',
    ):

    dir_output = os.path.expanduser( dir_output )
    root = os.path.expanduser( root )

    folder_out = os.path.join( dir_output, 'test' )
    folder_in  = os.path.join( root, 'test' )

    images = make_dirs(folder_in, extensions)
    with open( os.path.join(dir_output, '{}.txt'.format( 'test' )) , 'w') as f:
        for i, path in enumerate( tqdm(images) ):
            #print(i, path)              
            image_pathname = os.path.join(folder_out,'{:06d}.jpg'.format(i) )
            # load image
            img = image.load_image(path)
            # transform 
            img = image.resize_image(img,
                                    image_height, image_width,
                                    channels=image_channels,
                                    resize_mode=resize_mode,
                                    )
            # save image
            PIL.Image.fromarray(img).save(  image_pathname )
            # save label
            f.write('{}\n'.format( image_pathname ) )
Exemple #6
0
 def resize_image(self, image):
     """ Resize an image using image_min_side and image_max_side.
     """
     return resize_image(image,
                         min_side=self.image_min_side,
                         max_side=self.image_max_side)
     pass
def func_image (request, path) :
	__argument = request.GET.copy()

	__mode = __argument.get("mode", )
	__direction = __argument.get("direction", "center")
	__update = __argument.has_key("update")

	try :
		__width = int(__argument.get("width", None))
	except :
		__width = None
	else :
		__width = (__width > 0) and __width or None

	try :
		__height = int(__argument.get("height", None))
	except :
		__height = None
	else :
		__height = (__height > 0) and __height or None

	if __width or __height :
		try :
			return image.resize_image(
				path,
				(__width, __height, ),
				mode=__mode,
				direction=__direction
			)
		except Exception, e :
			print "[EE]" , e
			pass
Exemple #8
0
 def mold_inputs(self, images):
     """Takes a list of images and modifies them to the format expected
     as an input to the neural network.
     images: List of image matrices [height,width,depth]. Images can have
         different sizes.
     Returns 3 Numpy matrices:
     molded_images: [N, h, w, 3]. Images resized and normalized.
     image_metas: [N, length of meta data]. Details about each image.
     windows: [N, (y1, x1, y2, x2)]. The portion of the image that has the
         original image (padding excluded).
     """
     molded_images = []
     image_metas = []
     windows = []
     for image in images:
         # Resize image
         # TODO: move resizing to mold_image()
         original_shape = image.shape
         normalize(image, self.config.MEANS, self.config.STD)
         image, scale, window = resize_image(image, self.config.VIEW_SIZE)
         # Build image_meta
         image_meta = compose_image_meta(
             0, original_shape, image.shape, window, scale,
             np.zeros([self.config.CLASSES], dtype=np.int32))
         # Append
         molded_images.append(image)
         windows.append(window)
         image_metas.append(image_meta)
     # Pack into arrays
     molded_images = np.stack(molded_images)
     image_metas = np.stack(image_metas)
     windows = np.stack(windows)
     return molded_images, image_metas, windows
Exemple #9
0
 def resize_image(self, image, is_square_resize):
     """ Resize an image using image_min_side and image_max_side.
     """
     if self.no_resize:
         return image, 1
     else:
         return resize_image(image, min_side=self.image_min_side, max_side=self.image_max_side,
                             is_square_resize=is_square_resize)
Exemple #10
0
def func_image(request, cf):
    __argument = request.GET.copy()

    __mode = __argument.get(
        "mode",
        DEFAULT_IMAGE_RENDER_MODE,
    )
    __direction = __argument.get("direction", "center")
    __update = __argument.has_key("update")

    try:
        __width = int(__argument.get("width", None))
    except:
        __width = None
    else:
        __width = (__width > 0) and __width or None

    try:
        __height = int(__argument.get("height", None))
    except:
        __height = None
    else:
        __height = (__height > 0) and __height or None

    if __width or __height:
        return image.resize_image(
            cf,
            (
                __width,
                __height,
            ),
            mode=__mode,
            direction=__direction,
            improve=request.GET.has_key("improve"),
        )
        try:
            return image.resize_image(cf, (
                __width,
                __height,
            ),
                                      mode=__mode,
                                      direction=__direction)
        except Exception, e:
            print "[EE]", e
def save_image(data, filename):
    """Resize and upload image to S3 Bucket

    :param data: image data
    :param filename: string
    """
    file_path = images.path(filename)
    if os.path.exists(file_path):
        os.remove(file_path)

    # Save temporary image and resize
    image_folder = 'static/images/activities/'
    bucket_name = os.environ.get('S3_BUCKET_NAME')
    images.save(data, None, filename)
    resize_image(filename)

    # Upload image to AWS S3 bucket
    file_path = image_folder + filename
    upload_file(file_path, bucket_name, filename)
Exemple #12
0
    def __call__(self, image_rois):
        # TODO: cv2
        img = Image.open(image_rois[0])
        label = np.zeros((img.size[1], img.size[0]), np.uint8)

        for roi in image_rois[1]:
            # class_id = conf.type2class_id[roi.r_type]
            # For the moment we only support binary segmentation
            class_id = 1
            label[roi.tl_row:roi.br_row, roi.tl_col:roi.br_col] = class_id

        label_img = Image.fromarray(label, 'P')
        label_img.putpalette(conf.palette)
        label_path = self.labels_path + utils.to_png(image_rois[0])
        image.resize_image(label_img,
                           (conf.image_size[0] // 2,
                            conf.image_size[1] // 2))[0].save(label_path)

        label_file_path = self.labels_path + "/val.txt"
        with open(label_file_path, "a+") as label_file:
            label_file.write(label_path[len(self.labels_path):])
            label_file.write("\n")
Exemple #13
0
def func_image (request, cf) :
	__argument = request.GET.copy()

	__mode = __argument.get("mode", DEFAULT_IMAGE_RENDER_MODE, )
	__direction = __argument.get("direction", "center")
	__update = __argument.has_key("update")

	try :
		__width = int(__argument.get("width", None))
	except :
		__width = None
	else :
		__width = (__width > 0) and __width or None

	try :
		__height = int(__argument.get("height", None))
	except :
		__height = None
	else :
		__height = (__height > 0) and __height or None

	if __width or __height :
		return image.resize_image(
			cf,
			(__width, __height, ),
			mode=__mode,
			direction=__direction,
			improve=request.GET.has_key("improve"),
		)
		try :
			return image.resize_image(
				cf,
				(__width, __height, ),
				mode=__mode,
				direction=__direction
			)
		except Exception, e :
			print "[EE]" , e
Exemple #14
0
    def update(cls, obj, update_dict):
        image_stream = update_dict.get('id_image')
        for k, v in update_dict.iteritems():
            if k in obj._meta.get_all_field_names() or (k == 'wechat_id'):
                setattr(obj, k, v)
        if image_stream:
            image_format = get_image_format(image_stream)
            file_name = '%s.%s' % (obj.user.username, image_format)
            image_stream.name = file_name
            obj.avatar = image_stream

            thumbnail = resize_image(image_stream, *settings.THUMBNAIL_SIZE)
            obj.thumbnail.save('thumbnail_%s' % file_name,
                               File(thumbnail),
                               save=False)
        obj.save()
Exemple #15
0
    def _load_image(self, index):
        imgId = self.annotations['imgIds'][index]
        bbox = self.annotations['bboxes'][index]
        label = self.annotations['labels'][index]

        image_info = self.coco.loadImgs(self.image_ids[imgId])[0]
        path = os.path.join(self.data_dir, 'images', image_info['file_name'])
        image = np.asarray(Image.open(path).convert('RGB'))

        image = image[int(bbox[1]):int(bbox[3]),
                      int(bbox[0]):int(bbox[2]), ...]

        # resize image to target_size
        image, _ = resize_image(image, self.target_size)

        return image, label
Exemple #16
0
def parse_train_and_validation(
    root, 
    subfolder, 
    dir_output, 
    extensions, 
    image_height=256,
    image_width=256,
    image_channels=3,
    resize_mode='squash',
    ):
    
    folder_in = os.path.join( root, subfolder )
    folder_out = os.path.join( dir_output, subfolder )

    classes, class_to_idx = find_classes( folder_in )
    samples = make_dataset( folder_in, class_to_idx, extensions )
    if len(samples) == 0:
        raise(RuntimeError("Found 0 files in subfolders of: " + folder_in + "\n"
                            "Supported extensions are: " + ",".join(extensions)))

    with open( os.path.join(dir_output, '{}.txt'.format( 'labels' )) , 'w') as f: 
        for c in classes:
            f.write('{}\n'.format( c ))
            pathname = os.path.join( dir_output, subfolder, c )
            if os.path.exists(pathname) is not True:
                os.makedirs(pathname)

    with open( os.path.join(dir_output, '{}.txt'.format(subfolder)) , 'w') as f: 
        for i, (path, tag) in enumerate( tqdm(samples) ):         
            image_pathname = os.path.join(folder_out, classes[tag] ,'{:06d}.jpg'.format(i) )            
            # load image
            img = image.load_image(path)
            # transform 
            img = image.resize_image(img,
                                    image_height, image_width,
                                    channels=image_channels,
                                    resize_mode=resize_mode,
                                    )
            # save image
            PIL.Image.fromarray(img).save( image_pathname )
            # save label
            f.write('{} {}\n'.format( image_pathname, tag) )
Exemple #17
0
def detect(image, model, windows):
    bounding_boxes = []
    ycrcb_image = rgb_to_ycrcb(image)

    scaled_hogs = {}
    scales = [1, 2]

    for scale in scales:
        scaled_hogs[scale] = hog_features_at_scale(ycrcb_image, scale)

    for ((start_x, start_y), (end_x, end_y), scale) in windows:
        slice_x = slice(start_x, end_x)
        slice_y = slice(start_y, end_y)

        image_slice = ycrcb_image[slice_y, slice_x]
        image_slice = resize_image(image_slice)

        hog_slices = hog_features_for_slice_at_scale(scaled_hogs, scale,
                                                     (start_x, start_y),
                                                     (end_x, end_y))
        hog_channel_1_slice, hog_channel_2_slice, hog_channel_3_slice = hog_slices

        # hog_channel_1_slice = np.array(hog_features_for_channel(image_slice, 0, feature_vector=False))
        # hog_channel_2_slice = np.array(hog_features_for_channel(image_slice, 1, feature_vector=False))
        # hog_channel_3_slice = np.array(hog_features_for_channel(image_slice, 2, feature_vector=False))

        hog_features = combine_hog_features(np.ravel(hog_channel_1_slice),
                                            np.ravel(hog_channel_2_slice),
                                            np.ravel(hog_channel_3_slice),
                                            feature_vector=True)

        features = combine_features(hog_features,
                                    color_histogram_features(image_slice),
                                    spatial_binning_features(image_slice))

        prediction = model.predict(features)
        if prediction == 1:
            bounding_boxes.append(((start_x, start_y), (end_x, end_y)))

    return bounding_boxes
Exemple #18
0
def preprocess_img(img_path):
    image = np.asarray(Image.open(img_path).convert('RGB'))
    image = image[:, :, ::-1].copy()

    # visual_effect_generator = random_visual_effect_generator(
    #     contrast_range=(0.9, 1.1),
    #     brightness_range=(-.1, .1),
    #     hue_range=(-0.05, 0.05),
    #     saturation_range=(0.95, 1.05)
    # )
    #
    # visual_effect = next(visual_effect_generator)
    # # apply visual effect
    # image = visual_effect(image_bgr)

    image = image.astype(np.float32)
    image -= [103.939, 116.779, 123.68]

    # resize image
    image, image_scale = resize_image(image)
    return image, image_scale
    pass
def spatial_binning_features(image, size=(32, 32)):
    """Gathers all the image pixel information into a 1-D array"""
    return resize_image(image, size).ravel()
Exemple #20
0
def thumbnail(filename):
    orig_filename = os.path.join(app.config['IMAGES_ORIGINAL_DIR'], filename)
    img_filename = os.path.join(app.config['IMAGES_THUMBNAIL_DIR'], filename)
    resize_image(orig_filename, img_filename, app.config['IMAGES_THUMBNAIL_SIZE'])
    return send_file(img_filename)
Exemple #21
0
def main():
    args = parse()
    print(
        transform_to_ascii(
            args.gray(resize_image(get_image(args.image), args.width))))