def main(): # Capture and image_capture = ImageCapture(dir_path=IMAGE_DIR_PATH, n_camera=2) image_capture.capture() image_path = image_capture.last_captured_path # Predict model_path = MODEL_PATH client = LocalPredictApiClient(model_path) pred_result = client.predict(image_path) # Save prediction_data = PredictionData( image_path=image_path, prediction=pred_result['prediction'], json_result=str(pred_result), capture_datetime_local=image_capture.capture_datetime_local, capture_datetime_utc=image_capture.capture_datetime_utc) prediction_ds = PredictionDataStore(DB_DIR_PATH) prediction_ds.save(prediction_data)
if not os.path.exists(newpath): os.makedirs(newpath) imagefile = datafolder + filename + '.png' textfile = open(datafolder + filename + '.txt', 'a') file_operations.save_to_folder(textfile, imagefile, bounding_box, final) # todo get classes through GUI classes = [] #interface = CLI() file_operations = FileOperations() motor = MotorControl() camera = ImageCapture(RPI_CAMERA) image_processor = ImageProcessing(camera.capture()) delay = 1 / 1000.0 #images = input("How many images do you want per category (5 categories)?") images = 10000 STEPS_FOR_FULL_CIRCLE = 12360 steps = int(STEPS_FOR_FULL_CIRCLE / images) classes = ["Banana"] #, "Rolle"] only_snippets = False only_train_images = True ## Section for the configuration # Make images for every class for label in classes: if only_train_images:
from image_capture import ImageCapture from image_processing import ImageProcessing import cv2 import numpy as np camera = ImageCapture() #camera = cv2.VideoCapture(0) processor = ImageProcessing() while True: img_raw = camera.capture() img_cut = img_raw[:, int(np.shape(img_raw)[1] * 1 / 5):int(np.shape(img_raw)[1] * 4 / 5), :] img_gray = processor.gray(img_cut) edge = processor.canny(img_gray) contour = processor.max_contour(edge) cv2.drawContours(img_cut, contour, -1, (0, 255, 0), 3) bounding_box = processor.bounding_box(contour) print(bounding_box) #if bounding_box != -1: # print("success!") #else: # print("failure!") cv2.imshow('raw_image', img_raw) cv2.imshow('cut_image', img_cut) cv2.imshow('gray_image', img_gray) cv2.imshow('canny_image', edge) cv2.waitKey(20)