def init_model(train=True): """ Init model for both training and testing. :param train: indicate if current is in training :return: all stuffs that need for this model """ # Create training summary folder if not exist create_folder("summary/train/images") # Create testing summary folder if not exist create_folder("summary/test/images") # Use gpu if exist with tf.device('/device:GPU:0'): # Init image data file path print("⏳ Init input file path...") if train: file_paths = init_file_path(training_dir) else: file_paths = init_file_path(testing_dir) # Init training flag and global step print("⏳ Init placeholder and variables...") is_training = tf.placeholder(tf.bool, name="is_training") global_step = tf.train.get_or_create_global_step() # Load vgg16 model print("🤖 Load vgg16 model...") vgg = vgg16.Vgg16() # Build residual encoder model print("🤖 Build residual encoder model...") residual_encoder = ResidualEncoder() # Get dataset iterator iterator = get_dataset_iterator(file_paths, batch_size, shuffle=True) # Get color image color_image_rgb = iterator.get_next(name="color_image_rgb") color_image_yuv = rgb_to_yuv(color_image_rgb, "color_image_yuv") # Get gray image gray_image_one_channel = tf.image.rgb_to_grayscale(color_image_rgb, name="gray_image_one_channel") gray_image_three_channels = tf.image.grayscale_to_rgb(gray_image_one_channel, name="gray_image_three_channels") gray_image_yuv = rgb_to_yuv(gray_image_three_channels, "gray_image_yuv") # Build vgg model with tf.name_scope("vgg16"): vgg.build(gray_image_three_channels) # Predict model predict = residual_encoder.build(input_data=gray_image_three_channels, vgg=vgg, is_training=is_training) predict_yuv = tf.concat(axis=3, values=[tf.slice(gray_image_yuv, [0, 0, 0, 0], [-1, -1, -1, 1], name="gray_image_y"), predict], name="predict_yuv") predict_rgb = yuv_to_rgb(predict_yuv, "predict_rgb") # Get loss loss = residual_encoder.get_loss(predict_val=predict, real_val=tf.slice(color_image_yuv, [0, 0, 0, 1], [-1, -1, -1, 2], name="color_image_uv")) # Prepare optimizer update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): optimizer = tf.train.AdamOptimizer().minimize(loss, global_step=global_step, name='optimizer') # Init tensorflow summaries print("⏳ Init tensorflow summaries...") tf.summary.histogram("loss", loss) tf.summary.image("gray_image", gray_image_three_channels, max_outputs=1) tf.summary.image("predict_image", predict_rgb, max_outputs=1) tf.summary.image("color_image", color_image_rgb, max_outputs=1) return is_training, global_step, optimizer, loss, predict_rgb, color_image_rgb, gray_image_three_channels, file_paths
def init_model(train=True): """ Init model for both training and testing. :param train: indicate if current is in training :return: all stuffs that need for this model """ # Create training summary folder if not exist create_folder("summary/train/images") # Create testing summary folder if not exist create_folder("summary/test/images") # Use gpu if exist with tf.device('/device:GPU:0'): # Init image data file path testdir = input("输入图片的路径:") #file_paths = init_file_path(testing_dir) # Init training flag and global step print("⏳ Init placeholder and variables...") is_training = tf.placeholder(tf.bool, name="is_training") global_step = tf.train.get_or_create_global_step() # Load vgg16 model print("🤖 Load vgg16 model...") vgg = vgg16.Vgg16() # Build residual encoder model print("🤖 Build residual encoder model...") residual_encoder = ResidualEncoder() # Get dataset iterator #iterator = get_dataset_iterator(file_paths, batch_size, shuffle=True) # Get color image # color_image_rgb = iterator.get_next(name="color_image_rgb") # 获取下一张彩色图片 color_image_rgb = read_image(testdir) color_image_yuv = rgb_to_yuv(color_image_rgb, "color_image_yuv") # 将获取的rgb图转换成yuv格式 # Get gray image gray_image_one_channel = tf.image.rgb_to_grayscale( color_image_rgb, name="gray_image_one_channel") # 获取灰度图片 # 由上一步得到的灰度图转换成rgb3通道格式 gray_image_three_channels = tf.image.grayscale_to_rgb( gray_image_one_channel, name="gray_image_three_channels") # 三通道的灰度图 gray_image_yuv = rgb_to_yuv(gray_image_three_channels, "gray_image_yuv") # 灰度图转换yuv格式的灰度图像 # Build vgg model with tf.name_scope("vgg16"): vgg.build(gray_image_three_channels) #建立vgg模型 # Predict model # 建立残差编码模型: input_data :给第一层输入的数据 vgg: vgg模型 is_training: 一个标志指示是否在训练 predict = residual_encoder.build(input_data=gray_image_three_channels, vgg=vgg, is_training=is_training) # 预测的u,v两个空间 predict_yuv = tf.concat(axis=3, values=[ tf.slice(gray_image_yuv, [0, 0, 0, 0], [-1, -1, -1, 1], name="gray_image_y"), predict ], name="predict_yuv") # 将y,u,v三个空间拼接 predict_rgb = yuv_to_rgb(predict_yuv, "predict_rgb") # Get loss # 预测出来的uv两个通道与真实的uv两个通道的loss loss = residual_encoder.get_loss( predict_val=predict, real_val=tf.slice(color_image_yuv, [0, 0, 0, 1], [-1, -1, -1, 2], name="color_image_uv")) # Prepare optimizer update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): # global_step记录的其实是train阶段每一步的索引,或者说是训练迭代的计数器,比如说在最后画loss和 accuracy的横坐标即是global_step lr = tf.train.exponential_decay(0.001, global_step, 1000, 0.96) optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize( loss, global_step=global_step, name='optimizer') #global_step在训练中是计数的作用,每训练一个batch就加1 # Init tensorflow summaries print("⏳ Init tensorflow summaries...") tf.summary.histogram("loss", loss) tf.summary.image("gray_image", gray_image_three_channels, max_outputs=1) tf.summary.image("predict_image", predict_rgb, max_outputs=1) tf.summary.image("color_image", color_image_rgb, max_outputs=1) return is_training, global_step, optimizer, loss, predict_rgb, color_image_rgb, gray_image_three_channels, testdir
def init_model(train=True): # 初始化模型 """ 初始化模型 :param train: 指明是训练还是测试 :return: 返回这个模型所有所需要的东西 """ create_folder("summary/train/images") create_folder("summary/test/images") # 使用GPU加速 with tf.device('/device:GPU:0'): # 初始化图片数据路径 print("⏳ Init input file path...") if train: file_paths = init_file_path(training_dir) # 训练集的图片路径,返回的是所有图片的路径数组 else: # testing = input("测试集的路径:") file_paths = init_file_path(testing_dir) # 测试路径 # Init training flag and global step print("⏳ Init placeholder and variables...") is_training = tf.placeholder(tf.bool, name="is_training") global_step = tf.train.get_or_create_global_step() # Load vgg16 model print("🤖 Load vgg16 model...") vgg = vgg16.Vgg16() # Build residual encoder model print("🤖 Build residual encoder model...") residual_encoder = ResidualEncoder() # Get dataset iterator iterator = get_dataset_iterator(file_paths, batch_size, shuffle=True) # Get color image color_image_rgb = iterator.get_next( name="color_image_rgb") # 获取下一张彩色图片 color_image_yuv = rgb_to_yuv(color_image_rgb, "color_image_yuv") # 将获取的rgb图转换成yuv格式 # Get gray image gray_image_one_channel = tf.image.rgb_to_grayscale( color_image_rgb, name="gray_image_one_channel") # 获取灰度图片(单通道) # 由上一步得到的灰度图转换成rgb3通道格式 gray_image_three_channels = tf.image.grayscale_to_rgb( gray_image_one_channel, name="gray_image_three_channels") # 三通道的灰度图(rgb) gray_image_yuv = rgb_to_yuv(gray_image_three_channels, "gray_image_yuv") # 灰度图(rgb)转换yuv格式的灰度图像 # Build vgg model with tf.name_scope("vgg16"): vgg.build( gray_image_three_channels) #建立vgg模型,将三通道的灰度图输入到VGG网络中预测一些基本信息 # Predict model # 建立残差编码模型: input_data :给第一层输入的数据 vgg: vgg模型 is_training: 一个标志指示是否在训练 predict = residual_encoder.build(input_data=gray_image_three_channels, vgg=vgg, is_training=is_training) # 预测的u,v两个空间 predict_yuv = tf.concat(axis=3, values=[ tf.slice(gray_image_yuv, [0, 0, 0, 0], [-1, -1, -1, 1], name="gray_image_y"), predict ], name="predict_yuv") # 将y,u,v三个空间拼接 predict_rgb = yuv_to_rgb(predict_yuv, "predict_rgb") # Get loss # 预测出来的uv两个通道与真实的uv两个通道的loss loss = residual_encoder.get_loss( predict_val=predict, real_val=tf.slice(color_image_yuv, [0, 0, 0, 1], [-1, -1, -1, 2], name="color_image_uv")) # Prepare optimizer update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): # global_step记录的其实是train阶段每一步的索引,或者说是训练迭代的计数器,比如说在最后画loss和 accuracy的横坐标即是global_step lr = tf.train.exponential_decay(0.001, global_step, 1000, 0.96) optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize( loss, global_step=global_step, name='optimizer') #global_step在训练中是计数的作用,每训练一个batch就加1 # Init tensorflow summaries print("⏳ Init tensorflow summaries...") tf.summary.histogram("loss", loss) tf.summary.image("gray_image", gray_image_three_channels, max_outputs=1) tf.summary.image("predict_image", predict_rgb, max_outputs=1) tf.summary.image("color_image", color_image_rgb, max_outputs=1) return is_training, global_step, optimizer, loss, predict_rgb, color_image_rgb, gray_image_three_channels, file_paths
def init_model(train=True): """ Init model for both training and testing :param train: indicate if current is in training :return: all stuffs that need for this model """ # Create training summary folder if not exist create_folder("summary/train/images") # Create testing summary folder if not exist create_folder("summary/test/images") # Init image data file path print "Init file path" if train: file_paths = init_file_path(train_dir) else: file_paths = init_file_path(test_dir) # Init placeholder and global step print "Init placeholder" is_training = tf.placeholder(tf.bool, name="training_flag") global_step = tf.Variable(0, name='global_step', trainable=False) uv = tf.placeholder(tf.uint8, name='uv') # Init vgg16 model print "Init vgg16 model" vgg = vgg16.Vgg16() # Init residual encoder model print "Init residual encoder model" residual_encoder = ResidualEncoder() # Color image color_image_rgb = input_pipeline(file_paths, batch_size, test=not train) color_image_yuv = rgb_to_yuv(color_image_rgb, "rgb2yuv_for_color_image") # Gray image gray_image = tf.image.rgb_to_grayscale(color_image_rgb, name="gray_image") gray_image_rgb = tf.image.grayscale_to_rgb(gray_image, name="gray_image_rgb") gray_image_yuv = rgb_to_yuv(gray_image_rgb, "rgb2yuv_for_gray_image") gray_image = tf.concat(concat_dim=3, values=[gray_image, gray_image, gray_image], name="gray_image_input") # Build vgg model with tf.name_scope("content_vgg"): vgg.build(gray_image) # Predict model predict = residual_encoder.build(input_data=gray_image, vgg=vgg, is_training=is_training) predict_yuv = tf.concat(concat_dim=3, values=[ tf.slice(gray_image_yuv, [0, 0, 0, 0], [-1, -1, -1, 1], name="gray_image_y"), predict ], name="predict_yuv") predict_rgb = yuv_to_rgb(predict_yuv, "yuv2rgb_for_pred_image") # Cost cost = residual_encoder.get_cost(predict_val=predict, real_val=tf.slice(color_image_yuv, [0, 0, 0, 1], [-1, -1, -1, 2], name="color_image_uv")) u_channel_cost = tf.slice(cost, [0, 0, 0, 0], [-1, -1, -1, 1], name="u_channel_cost") v_channel_cost = tf.slice(cost, [0, 0, 0, 1], [-1, -1, -1, 1], name="v_channel_cost") cost = tf.case( { tf.equal(uv, 1): lambda: u_channel_cost, tf.equal(uv, 2): lambda: v_channel_cost }, default=lambda: (u_channel_cost + v_channel_cost) / 2, exclusive=True, name="cost") # Using different learning rate in different training steps # lr = tf.div(learning_rate, tf.cast(tf.pow(2, tf.div(global_step, 160000)), tf.float32), name="learning_rate") # Optimizer optimizer = tf.train.GradientDescentOptimizer( learning_rate=learning_rate).minimize(cost, global_step=global_step) # Summaries print "Init summaries" tf.histogram_summary("cost", tf.reduce_mean(cost)) tf.image_summary("color_image_rgb", color_image_rgb, max_images=1) tf.image_summary("predict_rgb", predict_rgb, max_images=1) tf.image_summary("gray_image", gray_image_rgb, max_images=1) return is_training, global_step, uv, optimizer, cost, predict, predict_rgb, color_image_rgb, gray_image_rgb, file_paths