def process_image(): numbers = list(map(int, open('numbers.txt').read().split(' '))) o, _ = get_image('numbers.png') slices = [(s, 'green', n) for ((_, s), n) in zip(get_digits_fake(o), numbers)] ani = make_animation(o, slices, 300) # plt.show() return ani
def post_something(): meme_path = request.args.get('meme') result_dict = {} if (not request.data): return "No data was sent !" # getting the image from client image_name = image_processing.get_image(request) # check if the file less than 1 MB if os.stat(image_name).st_size > 1000000: # reduce the size of the received image and delete the old one new_image_name = image_processing.get_image_less_than_1MB(image_name) os.remove(image_name) else: new_image_name = image_name predicted_label = predict_meme_class(new_image_name) return jsonify(predicted_label)
def convert(image_file, text_file=None): img = ip.get_image(image_file) lines = [] for line in ip.get_lines(img): words = [] for word in ip.get_words(img, line): chars = [] for char in ip.get_chars(img, word): c = convert_char(img, char) chars.append(c) words.append(''.join(chars)) lines.append(' '.join(words)) if text_file: f = open(text_file, 'w') f.write('\n'.join(lines)) f.close() else: print '\n'.join(lines)
def get_image_by_name(image_name, folder): return image_processing.get_image(image_name, folder)
from digits_classifiers import get_predictor from image_processing import get_digits, get_image from utils import make_animation import matplotlib.pylab as plt predictor = get_predictor('Logistic regression') original, img = get_image('numbers.png') predictions = [] for digit, slice_ in get_digits(img): p = predictor.predict(digit)[0] predictions.append((slice_, 'green', p)) ani = make_animation(original, predictions, interval=300) plt.show()