Exemple #1
0
def save_vis_masks(ims,im_names,gt_masks_dir,gt_masks,corrup_masks_dir,corrup_masks):
    # 5.2> save vis_gt_masks and corrup_masks 
    alpha_folder='alpha_masks'
    color_folder='color_masks'

    ## alpha masks(gt)
    alpha_gt_dir=os.path.join(gt_masks_dir,alpha_folder)
    create_dir(alpha_gt_dir)
    alpha_gt_masks=gt_masks*255.0
    save_images(alpha_gt_masks,alpha_gt_dir,im_names,im_ext)
   
    ## alpha masks(corrup)
    alpha_corrup_dir=os.path.join(corrup_masks_dir,alpha_folder) 
    create_dir(alpha_corrup_dir)
    alpha_corrup_masks=corrup_masks*255.0
    save_images(alpha_corrup_masks,alpha_corrup_dir,im_names,im_ext)
     
    ## color masks(gt)
    color_gt_masks=np.zeros((ims.shape),dtype=np.uint8)     
    color=[0,0,255]
    for m_id in xrange(len(gt_masks)):
        im=ims[m_id]
        mask=gt_masks[m_id]
        color_mask=vis_im_mask(im,mask,color,True)
        color_gt_masks[m_id]=color_mask
    
    color_gt_dir=os.path.join(gt_masks_dir,color_folder)
    create_dir(color_gt_dir)
    save_images(color_gt_masks,color_gt_dir,im_names,im_ext)
    
    ## here is small bug(need to debug)
    ## color masks(corrup)
    color_corrup_masks=np.zeros((ims.shape),dtype=np.uint8)     
    color=[0,0,255]
    for m_id in xrange(len(corrup_masks)):
        im=ims[m_id]
        mask=corrup_masks[m_id]
        color_mask=vis_im_mask(im,mask,color,True)
        color_corrup_masks[m_id]=color_mask
    
    color_corrup_dir=os.path.join(corrup_masks_dir,color_folder)
    create_dir(color_corrup_dir)
    save_images(color_corrup_masks,color_corrup_dir,im_names,im_ext)
Exemple #2
0
                    dcgan.input_label: one_label
                })

            d_loss = d_loss_fake + d_loss_real
            g_loss = g_loss1 + g_loss2

            writer.add_summary(ds, epoch * batch_count + i)
            writer.add_summary(gs, epoch * batch_count + i)

            print(
                'EPOCH {}'.format(epoch),
                '[{}/{}] D_Loss: {}, G_Loss: {}'.format(
                    i, batch_count, d_loss, g_loss))

            if i % save_image_interval == 0:
                # de-preprocess image & save
                z = np.random.normal(loc=0.0,
                                     scale=0.1,
                                     size=[batch_size, 100])
                gen = sess.run(dcgan.generated,
                               feed_dict={dcgan.input_noise: z})
                if channel_num > 1:
                    gen = np.reshape(gen, [batch_size, 64, 64, channel_num])
                else:
                    gen = np.reshape(gen, [batch_size, 64, 64])
                gen_img = gen + 1.0 * 127.0
                if not os.path.exists('gen_celeb'):
                    os.makedirs('gen_celeb')
                image_util.save_images('gen_celeb/{}_{}.png'.format(epoch, i),
                                       gen_img[0:64], [8, 8])
Exemple #3
0
        self.loss_sum = tf.summary.scalar('loss', self.loss)
        self.sum = tf.summary.merge([self.loss_sum])

#
#   hyper-parameter
#
batch_size = 200
dcgan = DCGAN(batch_size=batch_size, channel=1)

# load MNIST data
images, labels = mnist_data.load_mnist('./mnist')
input_img = []
for i in range(60000):
    input_img.append(images[i])
input_img = np.array(input_img)
image_util.save_images('output.png', input_img[0:64], [8,8])

# preprocess images
input_img = input_img / 127.0 - 1.0
input_img = np.reshape(input_img, [60000, 28, 28, 1])

# init TF
init = tf.global_variables_initializer()
saver = tf.train.Saver()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True

with tf.Session(config=config) as sess:
    sess.run(init)
    writer = tf.summary.FileWriter('./graphs_mnist', sess.graph)
Exemple #4
0
import os
import numpy as np
from image_util import save_image, save_images


def load_mnist(path):
    fd = open(os.path.join(path, 'train-images-idx3-ubyte'))
    images = np.fromfile(file=fd, dtype=np.uint8)
    images = images[16:].reshape([60000, 28, 28]).astype(np.float)

    fd = open(os.path.join(path, 'train-labels-idx1-ubyte'))
    labels = np.fromfile(file=fd, dtype=np.uint8)
    labels = labels[8:].reshape([60000]).astype(np.float)

    return images, labels


# TEST DRIVE
images, labels = load_mnist('./mnist')
save_images('output.png', images[0:64], [8, 8])