Exemple #1
0
import torch.nn as nn
import torch.utils.data.distributed
from torchvision.models.densenet import densenet201
from torchvision import transforms
from torchvision import datasets
import json
from imagemove2 import getlookup

a, b, c = getlookup()
d = [a[x] for x in a]
labels_1_ptype = {
    0: 8,
    1: 2,
    2: 0,
    3: 7,
    4: 9,
    5: 1,
    6: 4,
    7: 3,
    8: 10,
    9: 5,
    10: 6,
}
startidx = {
    'Apple': 0,
    'Cedar': 4,
    'Cherry': 6,
    'Corn': 9,
    'Grape': 17,
    'Citrus': 24,
    'Peach': 27,
Exemple #2
0
                    else:
                        buf = param_state['momentum_buffer']
                        buf.mul_(momentum).add_(1 - dampening, d_p)
                    if nesterov:
                        d_p = d_p.add(momentum, buf)
                    else:
                        d_p = buf

                p.data.add_(-group['lr'], d_p)

        return loss


if __name__ == '__main__':

    lookup = getlookup()
    args = DotDict({
        'batch_size': 32,
        'batch_mul': 4,
        'val_batch_size': 10,
        'cuda': True,
        'model': '',
        'train_plot': False,
        'epochs': [60],
        'try_no': '1_densecedar',
        'imsize': [224],
        'imsize_l': [256],
        # 'traindir': '/root/palm/DATA/plant/typesep_train/Cedar',
        'valdir': '/media/palm/Unimportant/pdr2018/typesep_train/Cedar',
        'workers': 4,
        'resume': False,
Exemple #3
0
def main():
    root_path = '/media/palm/Unimportant/pdr2018/typesep_validate/Tomato/'
    image_name = 'c9ebc74c2177ce60a8230855333fb9e7.jpg'
    folder_name = '14_Tomato_Spider_Mite_Damage_Serious'
    # image_path = root_path+'/14_Tomato_Spider_Mite_Damage_Serious/1c0f1ae1374d01c2933069232735a331.jpg'
    image_path = os.path.join(root_path, folder_name, image_name)
    topk = 1
    cuda = 'cuda'
    arch = 'densenet201'
    CONFIG = {
        'resnet152': {
            'target_layer': 'layer4.2',
            'input_size': 224
        },
        'vgg19': {
            'target_layer': 'features.36',
            'input_size': 224
        },
        'vgg19_bn': {
            'target_layer': 'features.52',
            'input_size': 224
        },
        'inception_v3': {
            'target_layer': 'Mixed_7c',
            'input_size': 299
        },
        'densenet201': {
            'target_layer': 'features.denseblock4',
            'input_size': 224
        },
        # Add your model
    }.get(arch)
    a, b, c = getlookup()
    device = torch.device(
        'cuda' if cuda and torch.cuda.is_available() else 'cpu')

    if cuda:
        current_device = torch.cuda.current_device()
        print('Running on the GPU:',
              torch.cuda.get_device_name(current_device))
    else:
        print('Running on the CPU')

    # Synset words
    classes = c['Tomato']

    # Model
    model = getmodel(20)
    checkpoint = torch.load('checkpoint/try_4_densesep-Tomatotemp.t7')
    model.load_state_dict(checkpoint['net'])
    model.to('cuda')
    model.eval()

    # Image
    raw_image = cv2.imread(image_path)[..., ::-1]
    raw_image = cv2.resize(raw_image, (CONFIG['input_size'], ) * 2)
    image = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(
            mean=[0.485, 0.456, 0.406],
            std=[0.229, 0.224, 0.225],
        )
    ])(raw_image).unsqueeze(0)

    # =========================================================================
    print('Grad-CAM')
    # =========================================================================
    gcam = GradCAM(model=model)
    probs, idx = gcam.forward(image.to(device))

    for i in range(0, topk):
        gcam.backward(idx=idx[i])
        output = gcam.generate(target_layer=CONFIG['target_layer'])

        save_gradcam(
            'results/{}_{}_gcam_{}.png'.format(image_name, classes[idx[i]],
                                               arch), output, raw_image)
        print('[{:.5f}] {}'.format(probs[i], classes[idx[i]]))

    # =========================================================================
    print('Vanilla Backpropagation')
    # =========================================================================
    bp = BackPropagation(model=model)
    probs, idx = bp.forward(image.to(device))

    for i in range(0, topk):
        bp.backward(idx=idx[i])
        output = bp.generate()

        save_gradient(
            'results/{}_{}_bp_{}.png'.format(image_name, classes[idx[i]],
                                             arch), output)
        print('[{:.5f}] {}'.format(probs[i], classes[idx[i]]))

    # =========================================================================
    print('Deconvolution')
    # =========================================================================
    deconv = Deconvolution(
        model=copy.deepcopy(model))  # TODO: remove hook func in advance
    probs, idx = deconv.forward(image.to(device))

    for i in range(0, topk):
        deconv.backward(idx=idx[i])
        output = deconv.generate()

        save_gradient(
            'results/{}_{}_deconv_{}.png'.format(image_name, classes[idx[i]],
                                                 arch), output)
        print('[{:.5f}] {}'.format(probs[i], classes[idx[i]]))

    # =========================================================================
    print('Guided Backpropagation/Guided Grad-CAM')
    # =========================================================================
    gbp = GuidedBackPropagation(model=model)
    probs, idx = gbp.forward(image.to(device))

    for i in range(0, topk):
        gcam.backward(idx=idx[i])
        region = gcam.generate(target_layer=CONFIG['target_layer'])

        gbp.backward(idx=idx[i])
        feature = gbp.generate()

        h, w, _ = feature.shape
        region = cv2.resize(region, (w, h))[..., np.newaxis]
        output = feature * region

        save_gradient(
            'results/{}_{}_gbp_{}.png'.format(image_name, classes[idx[i]],
                                              arch), feature)
        save_gradient(
            'results/{}_{}_ggcam_{}.png'.format(image_name, classes[idx[i]],
                                                arch), output)
        print('[{:.5f}] {}'.format(probs[i], classes[idx[i]]))