Exemple #1
0
def callback(image):
    global benchmarking, benchmark_convert, benchmark_detect, benchmark_threshold

    if benchmarking:
        convert_start = datetime.now()

    image = convert(image.data, input_type='ros', output_type='cv2')
    original_image = np.array(image)
  
    if benchmarking:
        benchmark_convert.append(millis(datetime.now() - convert_start))

    image = threshold(image)
    buttons = detect_buttons(image)

    button = Button()
    button.image.data = convert(image, input_type='cv2', output_type='ros')
    image_publisher.publish(button.image)
    

    for button in buttons:
        x0 = int(button.x - button.w/2)
        y0 = int(button.y - button.h/2)
        x1 = int(button.x + button.w/2)
        y1 = int(button.y + button.h/2)
        thumbnail = original_image[y0:y1,x0:x1]
        button.image.data = convert(cv2.resize(thumbnail, (100, 100)), input_type='cv2', output_type='ros')
        #image_publisher.publish(button.image)
        
	button_publisher.publish(button)

    rospy.loginfo('Detected %d buttons' % len(buttons))
Exemple #2
0
def train():

    print 'Button identifier classifier'
    clf = Pipeline([
        ('normalizer', MinMaxScaler()),
        ('classifier',
         OneVsRestClassifier(LogisticRegression(penalty='l2', C=1e-1)))
    ]  # LogisticRegression(penalty='l2', C=1e-4)
                   )
    X = []
    y = []
    print 'Getting data'
    n = 0
    for button in progressor(db_buttons.find({})):
        #x = np.array( button['image'], dtype=np.uint8 )
        #img = cv2.imdecode(x, 1)
        img = convert(button['image'], input_type='ros', output_type='cv2')
        vector = get_feature_vector(img)
        #display_button(img, button['label'], '')
        #key = cv2.waitKey() % 256
        #if(key == ord('s')):
        #    n += 1
        #    cv2.imwrite('/home/rolf/Desktop/%d.jpg' % n, img)
        #print vector
        X.append(vector)
        y.append(process_label(button['label']))

    train_save_test(clf, X, y, 'ovr_lr.pkl', labels)

    print 'Button on/off classifier'

    X = []
    y = []
    print 'Getting data'
    for button in progressor(db_buttons.find()):
        #x = np.array( button['img'], dtype=np.uint8 )
        #img = cv2.imdecode(x, 1)
        img = convert(button['image'], input_type='ros', output_type='cv2')
        vector = get_onoff_feature_vector(img)

        #print button.get('on')
        #vector = get_onoff_feature_vector(img)
        #print sum(vector)
        #print len(vector)
        X.append(vector)
        y.append(1 if button.get('on') == True else 0)

    clf = Pipeline([('normalizer', MinMaxScaler()),
                    ('classifier',
                     LogisticRegression(penalty='l2',
                                        C=1e1,
                                        class_weight='auto'))
                    ]  #LogisticRegression(penalty='l2', C=1e0))]
                   )

    train_save_test(clf, X, y, 'onoff_lr.pkl', [0, 1])
Exemple #3
0
def train():

    print 'Button identifier classifier'
    clf = Pipeline([
        ('normalizer', MinMaxScaler()),
        ('classifier', OneVsRestClassifier(LogisticRegression(penalty='l2', C=1e-1)))] # LogisticRegression(penalty='l2', C=1e-4)
    )
    X = []
    y = []
    print 'Getting data'
    n = 0
    for button in progressor(db_buttons.find({})):
        #x = np.array( button['image'], dtype=np.uint8 )
        #img = cv2.imdecode(x, 1)
        img = convert(button['image'], input_type='ros', output_type='cv2')
        vector = get_feature_vector(img)
        #display_button(img, button['label'], '')
        #key = cv2.waitKey() % 256
        #if(key == ord('s')):
        #    n += 1
        #    cv2.imwrite('/home/rolf/Desktop/%d.jpg' % n, img)
        #print vector
        X.append(vector)
        y.append(process_label(button['label']))

    train_save_test(clf, X, y, 'ovr_lr.pkl', labels)

    print 'Button on/off classifier'

    X = []
    y = []
    print 'Getting data'
    for button in progressor(db_buttons.find()):
        #x = np.array( button['img'], dtype=np.uint8 )
        #img = cv2.imdecode(x, 1)
        img = convert(button['image'], input_type='ros', output_type='cv2')
        vector = get_onoff_feature_vector(img)

        #print button.get('on')
        #vector = get_onoff_feature_vector(img)
        #print sum(vector)
        #print len(vector)
        X.append(vector)
        y.append(1 if button.get('on') == True else 0)

    clf = Pipeline([
        ('normalizer', MinMaxScaler()),
        ('classifier', LogisticRegression(penalty='l2', C=1e1, class_weight='auto'))]#LogisticRegression(penalty='l2', C=1e0))]
    )

    train_save_test(clf, X, y, 'onoff_lr.pkl', [0,1])
Exemple #4
0
def callback(button):
    try:
        img = convert(button.image.data, input_type='ros', output_type='cv2')
        vector = get_feature_vector(img)
        label = clf.predict([vector])[0]

        try:
            p = np.max(clf.predict_proba([vector])[0])
        except:
            p = 1.0

        #rospy.loginfo('%s: %f' % (label, p))

        assign_message_label(button, label)
        if button.button_type != button.BUTTON_NONE:
            rospy.loginfo('Uncertain found button %s (%.2f%%) (C:%.2f)' %
                          (label, p, certainties[button.button_type]))
        #display_button(img, label, '%f' % p)

        for k, v in certainties.iteritems():
            certainties[k] = max(0, certainties[k] - 1)

        if button.button_type != button.BUTTON_NONE and p > 0.7:
            certainties[button.button_type] = min(10, certainties[k] + 3 * p)
            if certainties[button.button_type] > 2.7:
                #rospy.loginfo('%s - %.3f' % (label, p))
                rospy.loginfo('Found button %s' % label)
                on = onoff_clf.predict(get_onoff_feature_vector(img))
                button.on = True if on else False
                label_str = '%s (%.0f%%)' % (label, 100.0 * p)
                onoff_str = 'on' if on else 'off'
                button_publisher.publish(button)

    except Exception as e:
        rospy.logwarn(e)
Exemple #5
0
def callback(button):
    try:
        img = convert(button.image.data, input_type='ros', output_type='cv2')
        vector = get_feature_vector(img)
        label = clf.predict([vector])[0]

        try:
            p = np.max(clf.predict_proba([vector])[0])
        except:
            p = 1.0
	
        #rospy.loginfo('%s: %f' % (label, p))

        assign_message_label(button, label)
        if button.button_type != button.BUTTON_NONE:
	    rospy.loginfo('Uncertain found button %s (%.2f%%) (C:%.2f)' % (label, p, certainties[button.button_type]))
        #display_button(img, label, '%f' % p)

        for k, v in certainties.iteritems():
            certainties[k] = max(0, certainties[k] - 1)
	
        if button.button_type != button.BUTTON_NONE and p > 0.7:
            certainties[button.button_type] = min(10, certainties[k] + 3 * p)
            if certainties[button.button_type] > 2.7:
                #rospy.loginfo('%s - %.3f' % (label, p))
                rospy.loginfo('Found button %s' % label)
                on = onoff_clf.predict(get_onoff_feature_vector(img))
                button.on = True if on else False
                label_str = '%s (%.0f%%)' % (label, 100.0*p)
                onoff_str = 'on' if on else 'off'
                button_publisher.publish(button)

    except Exception as e:
        rospy.logwarn(e)
def test():
    """
    Runs the test set with all possible detectors, descriptors and matchers,
    """

    # Get the query images
    global query_images
    query_images = get_query_images()
    for key, image in query_images.iteritems():
        query_images[key][ 0: 18,  0:100] = [255, 255, 255]
        query_images[key][82:100,  0:100] = [255, 255, 255]
        query_images[key][ 0:100,  0: 18] = [255, 255, 255]
        query_images[key][ 0:100, 82:100] = [255, 255, 255]

    # Get the data test set
    X = []
    y = []
    labels = []
    for button in progressor(buttons.find(snapshot=True)):
        try:
            image = preprocess(convert(button['image'], input_type='ros', output_type='cv2'))
            label = button['label'].upper() if button['label'] is not None else 'NONE'
            if label not in labels:
                labels.append(label)
            X.append(image)
            y.append(label)
        except:
            print 'Skipping sample'

    # Set up which detectors, descriptors and matchers to use for testing
    detector_formats = [""]#,"Grid","Pyramid"]
    detector_types = ["HARRIS", "SIFT", "SURF", "ORB", "MSER", "GFTT"]
    descriptor_types = ["SIFT", "SURF", "ORB"]
    matcher_types = ["BruteForce", "FlannBased"]

    # Test all combinations
    for detector_format in detector_formats:
        for detector_type in detector_types:
            for descriptor_type in descriptor_types:
                for matcher_type in matcher_types:
                    if descriptor_type == 'ORB' and detector_type == 'SIFT':
                        continue
                    test_technique(X, y, labels, detector_name=detector_format + detector_type, descriptor_name=descriptor_type,
                                   matcher_name=matcher_type)
Exemple #7
0
def test():
    """
    Tests the button detection algorithm on our dataset
    """
    db = MongoClient()
    fotos = db['aidu']['elevator_fotos']
    for idx, foto in enumerate(fotos.find()):
        #if idx not in [143, 196, 206, 524]:
        #    continue

        rospy.loginfo("Processing foto %d" % idx)
        convert_start = datetime.now()
        image = convert(foto['image'], input_type='ros', output_type='cv2')
        benchmark_convert.append(millis(datetime.now() - convert_start))

        original_image = np.array(image)

        # Threshold
        image = threshold(image)
        threshold_image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)

        # Detect buttons
        buttons = detect_buttons(image)

        rospy.loginfo('Foto %d - convert: %fms - threshold: %fms - detect: %fms' % (idx, benchmark_convert[-1],
                                                                                    benchmark_threshold[-1],
                                                                                    benchmark_detect[-1]))
        rospy.loginfo('Bytes: %d' % len(foto['image']))
        rospy.loginfo('Detected %d buttons' % len(buttons))

        # Show button
        for button in buttons:
            x0 = int(button.x - button.w/2)
            y0 = int(button.y - button.h/2)
            x1 = int(button.x + button.w/2)
            y1 = int(button.y + button.h/2)
            cv2.rectangle(original_image, (x0, y0), (x1, y1), (0, 0, 255), 2)
            cv2.rectangle(threshold_image, (x0, y0), (x1, y1), (0, 0, 255), 2)
        out = np.vstack((original_image, threshold_image))
        cv2.imshow('Button detector', cv2.resize(out, (640, 720)))
        cv2.waitKey()

        if rospy.is_shutdown():
            break