def train():
    x_train, y_train, _ = images.read_traffic_light(True)
    x_test, y_test, _ = images.read_traffic_light(False)

    train_batches = x_train.shape[0]

    x, y, one_hot, result = model.get_model(is_train=True)
    loss = get_loss(result, one_hot)
    optimizer = get_optimizer(loss)

    saver = tf.compat.v1.train.Saver()
    with tf.compat.v1.Session() as sess:
        sess.run(tf.compat.v1.global_variables_initializer())

        for epoch in range(utils.epochs):
            for batch in range(train_batches // utils.batch_size):
                start = batch * utils.batch_size
                next_x = x_train[start:start + utils.batch_size]
                next_y = y_train[start:start + utils.batch_size]

                sess.run(optimizer, feed_dict={x: next_x, y: next_y})

            loss_result = sess.run(loss, feed_dict={x: x_test, y: y_test})
            print("epoch: {}, loss: {}".format(epoch, loss_result))

        saver.save(sess, "./result/result.ckpt")
Exemple #2
0
def test():
    x_test, y_test, raw_names = images.read_traffic_light(False)
    idxs = [random.randint(0, x_test.shape[0] - 1) for _ in range(200)]

    pics = []
    labels = []
    names = []

    for i in idxs:
        pics.append(x_test[i])
        labels.append(y_test[i])
        names.append(raw_names[i])

    x, _, _, result = model.get_model(is_train=False, keep_prob=1)

    with tf.Session() as sess:
        saver = tf.train.Saver()
        saver.restore(sess, "./result/result.ckpt")

        dists = result.eval(feed_dict={x: pics})

        right_count = 0
        for i in range(len(dists)):
            print(i)
            dist = dists[i]
            pred_result = np.argmax(dist) == labels[i]
            if pred_result:
                right_count += 1

            print("{}: {} is {}, result is {}".format(pred_result, names[i],
                                                  utils.get_traffic_name(labels[i]),
                                                  utils.get_traffic_name(np.argmax(dist))))

        print("accuracy is {}".format(right_count / len(dists)))