def __init__(self, operator=None, **hyperparams): if operator is None: raise ValueError("Operator is a required argument.") self._hyperparams = hyperparams resampler_instance = OrigModel(**self._hyperparams) super(EditedNearestNeighboursImpl, self).__init__(operator=operator, resampler=resampler_instance)
def __init__(self, operator = None, sampling_strategy='auto', random_state=None, n_neighbors=None, n_seeds_S=1, n_jobs=1): if operator is None: raise ValueError("Operator is a required argument.") self._hyperparams = { 'sampling_strategy': sampling_strategy, 'random_state': random_state, 'n_neighbors': n_neighbors, 'n_seeds_S': n_seeds_S, 'n_jobs': n_jobs} resampler_instance = OrigModel(**self._hyperparams) super(CondensedNearestNeighbourImpl, self).__init__( operator = operator, resampler = resampler_instance)
def __init__(self, operator = None, sampling_strategy='auto', random_state=None, n_neighbors=3, max_iter=100, kind_sel='all', n_jobs=1): if operator is None: raise ValueError("Operator is a required argument.") self._hyperparams = { 'sampling_strategy': sampling_strategy, 'random_state': random_state, 'n_neighbors': n_neighbors, 'max_iter': max_iter, 'kind_sel': kind_sel, 'n_jobs': n_jobs} resampler_instance = OrigModel(**self._hyperparams) super(RepeatedEditedNearestNeighboursImpl, self).__init__( operator = operator, resampler = resampler_instance)
def __init__(self, operator=None, estimator=None, sampling_strategy='auto', random_state=None, cv=5, n_jobs=1): if operator is None: raise ValueError("Operator is a required argument.") self._hyperparams = { 'estimator': estimator, 'sampling_strategy': sampling_strategy, 'random_state': random_state, 'cv': cv, 'n_jobs': n_jobs } resampler_instance = OrigModel(**self._hyperparams) super(InstanceHardnessThresholdImpl, self).__init__(operator=operator, resampler=resampler_instance)
def __init__( self, operator=None, estimator=None, sampling_strategy="auto", random_state=None, cv=5, n_jobs=1, ): if operator is None: raise ValueError("Operator is a required argument.") self._hyperparams = { "estimator": estimator, "sampling_strategy": sampling_strategy, "random_state": random_state, "cv": cv, "n_jobs": n_jobs, } resampler_instance = OrigModel(**self._hyperparams) super(_InstanceHardnessThresholdImpl, self).__init__(operator=operator, resampler=resampler_instance)
def __init__( self, operator=None, sampling_strategy="auto", random_state=None, n_neighbors=None, n_seeds_S=1, n_jobs=1, ): if operator is None: raise ValueError("Operator is a required argument.") self._hyperparams = { "sampling_strategy": sampling_strategy, "random_state": random_state, "n_neighbors": n_neighbors, "n_seeds_S": n_seeds_S, "n_jobs": n_jobs, } resampler_instance = OrigModel(**self._hyperparams) super(CondensedNearestNeighbourImpl, self).__init__(operator=operator, resampler=resampler_instance)
def __init__(self, operator=None, sampling_strategy='auto', random_state=None, n_neighbors=3, kind_sel='all', allow_minority=False, n_jobs=1): if operator is None: raise ValueError("Operator is a required argument.") self._hyperparams = { 'sampling_strategy': sampling_strategy, 'random_state': random_state, 'n_neighbors': n_neighbors, 'kind_sel': kind_sel, 'allow_minority': allow_minority, 'n_jobs': n_jobs } resampler_instance = OrigModel(**self._hyperparams) super(AllKNNImpl, self).__init__(operator=operator, resampler=resampler_instance)