test_features = vectorizer.transform([r for r in test[0]]) # Fit a naive bayes model to the training data. # This will train the model using the word counts we computer, # and the existing classifications in the training set. nb = MultinomialNB() nb.fit(train_features, [int(r) for r in reviews[1]]) # Now we can use the model to predict classifications for our test features. predictions = nb.predict(test_features) # Compute the error. print(metrics.classification_report(test[1], predictions)) print("accuracy: {0}".format(metrics.accuracy_score(test[1], predictions))) while True: sentences = [] sentence = raw_input("\n\033[93mPlease enter a sentence to get sentiment evaluated. Enter \"exit\" to quit.\033[0m\n") if sentence == "exit": print("\033[93mexit program ...\033[0m\n") break else: sentences.append(sentence) input_features = vectorizer.transform(extract_words(sentences)) prediction = nb.predict(input_features) if prediction[0] == 1 : print("---- \033[92mpositive\033[0m\n") else: print("---- \033[91mneagtive\033[0m\n")
test_features = vectorizer.transform([r for r in test[0]]) # Fit a naive bayes model to the training data. # This will train the model using the word counts we computer, # and the existing classifications in the training set. nb = MultinomialNB() nb.fit(train_features, [int(r) for r in reviews[1]]) # Now we can use the model to predict classifications for our test features. predictions = nb.predict(test_features) # Compute the error. print(metrics.classification_report(test[1], predictions)) print("accuracy: {0}".format(metrics.accuracy_score(test[1], predictions))) while True: sentences = [] sentence = input("\n\033[93mPlease enter a sentence to get sentiment evaluated. Enter \"exit\" to quit.\033[0m\n") if sentence == "exit": print("\033[93mexit program ...\033[0m\n") break else: sentences.append(sentence) input_features = vectorizer.transform(extract_words(sentences)) prediction = nb.predict(input_features) if prediction[0] == 1 : print("---- \033[92mpositive\033[0m\n") else: print("---- \033[91mneagtive\033[0m\n")