def _process_image(self,xml_file,img_file):
        if not os.path.exists(img_file):
            return None,None,None,None,None,None,None
        if self.image_preprocess is not None:
            img = wmli.imread(img_file)
            img = self.image_preprocess(img)
            image_data = wmli.encode_img(img)
        else:
            image_data = tf.gfile.FastGFile(img_file, 'rb').read()

        shape, _bboxes, _labels_text, _difficult, _truncated,_ = odu.read_voc_xml(xml_file, adjust=None)
        _labels = self.labels_text_to_labels(_labels_text)
        bboxes = []
        labels_text = []
        difficult = []
        truncated = []
        labels = []
        for data in zip(_bboxes,_labels,_labels_text,_difficult,_truncated):
            if self.category_id_filter(data[1]):
                bboxes.append(data[0])
                labels.append(data[1])
                labels_text.append(data[2])
                difficult.append(data[3])
                truncated.append(data[4])

        if len(labels) == 0:
            #print(f"Ignore {name}.")
            return None,None,None,None,None,None,None
        return image_data, shape, bboxes, labels, labels_text, difficult, truncated
Exemple #2
0
def trans_dir(src_dir, out_dir):
    sub_dirs = wmlu.recurse_get_subdir_in_dir(src_dir)
    pattern = "img_{:05d}.jpg"
    wmlu.create_empty_dir(out_dir, remove_if_exists=False)
    for sd in sub_dirs:
        if sd[-1] == "/":
            sd = sd[:-1]
        rsd = osp.join(src_dir, sd)

        files = glob.glob(osp.join(rsd, "*.jpg"))
        if len(files) == 0:
            continue

        save_name = osp.join(out_dir, sd + f"_{data_type}_{len(files)}.np")
        save_dir_name = osp.dirname(save_name)
        wmlu.create_empty_dir(save_dir_name, remove_if_exists=False)

        all_frames = []
        for i in range(len(files)):
            file_name = pattern.format(i + 1)
            file_path = osp.join(rsd, file_name)
            if not osp.exists(file_path):
                print(f"File {file_path} not exists, len={len(files)}")
                continue
            with open(file_path, "rb") as f:
                data = f.read()
            if args.new_short > 2:
                img = wmli.decode_img(data)
                img = wmli.resize_short_size(img, args.new_short)
                data = wmli.encode_img(img)
            all_frames.append(data)

        print(f"Save {save_name}")
        with open(save_name, "wb") as f:
            pickle.dump(all_frames, f)
Exemple #3
0
def extract_frame(vid_item):
    """Generate optical flow using dense flow.

    Args:
        vid_item (list): Video item containing video full path,
            video (short) path, video id.

    Returns:
        bool: Whether generate optical flow successfully.
    """
    full_path, subdir, save_path = vid_item

    out_full_path = save_path

    vr = wmli.VideoReader(full_path)
    print(f"{full_path} fps {vr.fps}.")
    sys.stdout.flush()
    # for i in range(len(vr)):
    all_frames = []
    try:
        for i, vr_frame in enumerate(vr):
            if vr_frame is not None:
                if img_process_fn is not None:
                    vr_frame = img_process_fn(vr_frame)
                w, h, _ = np.shape(vr_frame)
                if args.new_short == 0:
                    if args.new_width == 0 or args.new_height == 0:
                        # Keep original shape
                        out_img = vr_frame
                    else:
                        out_img = mmcv.imresize(vr_frame,
                                                (args.new_width,
                                                 args.new_height))
                else:
                    if min(h, w) == h:
                        new_h = args.new_short
                        new_w = int((new_h / h) * w)
                    else:
                        new_w = args.new_short
                        new_h = int((new_w / w) * h)
                    out_img = mmcv.imresize(vr_frame, (new_h, new_w))
                all_frames.append(wmli.encode_img(out_img))
            else:
                warnings.warn(
                    'Length inconsistent!'
                    f'Early stop with {i + 1} out of {len(vr)} frames.')
                break

        out_full_path = out_full_path+f"_{len(all_frames)}.np"
        with open(out_full_path,"wb") as f:
            pickle.dump(all_frames,f)
    except Exception as e:
        print(f"Process {full_path} faild, {e}")

    print(f'{full_path} -> {out_full_path} done')
    sys.stdout.flush()
    return True
Exemple #4
0
def create_tf_example(image, annotations):
    global src_file_index
    image_height = image['img_height']
    image_width = image['img_width']
    img_path = image['img_path']

    if RECORD_IMG_SIZE is None:
        with tf.gfile.GFile(img_path, 'rb') as fid:
            encoded_jpg = fid.read()
    else:
        img = wmli.imread(img_path)
        img = wmli.resize_img(img, RECORD_IMG_SIZE, keep_aspect_ratio=True)
        encoded_jpg = wmli.encode_img(img)

    xmin = []
    xmax = []
    ymin = []
    ymax = []
    is_crowd = []
    category_ids = []

    for l, box in annotations:
        xmin.append(box[1])
        xmax.append(box[3])
        ymin.append(box[0])
        ymax.append(box[2])
        is_crowd.append(False)
        category_ids.append(l)

    if len(xmin) == 0:
        return None

    feature_dict = {
        'image/height': dataset_util.int64_feature(image_height),
        'image/width': dataset_util.int64_feature(image_width),
        'image/filename': dataset_util.bytes_feature(img_path.encode('utf8')),
        'image/encoded': dataset_util.bytes_feature(encoded_jpg),
        'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')),
        'image/object/bbox/xmin': dataset_util.float_list_feature(xmin),
        'image/object/bbox/xmax': dataset_util.float_list_feature(xmax),
        'image/object/bbox/ymin': dataset_util.float_list_feature(ymin),
        'image/object/bbox/ymax': dataset_util.float_list_feature(ymax),
        'image/object/class/label':
        dataset_util.int64_list_feature(category_ids),
        'image/object/is_crowd': dataset_util.int64_list_feature(is_crowd),
    }
    example = tf.train.Example(features=tf.train.Features(
        feature=feature_dict))
    return example