def main(): image = ia.quokka_square((256, 256)) image_q2 = iaa.quantize_kmeans(image, 2) image_q16 = iaa.quantize_kmeans(image, 16) ia.imshow(np.hstack([image_q2, image_q16])) from_cs = "RGB" to_cs = ["RGB", "Lab"] kwargs = {"from_colorspace": from_cs, "to_colorspace": to_cs} augs = [ iaa.KMeansColorQuantization(2, **kwargs), iaa.KMeansColorQuantization(4, **kwargs), iaa.KMeansColorQuantization(8, **kwargs), iaa.KMeansColorQuantization((2, 16), **kwargs), ] images_aug = [] for aug in augs: images_aug.extend(aug(images=[image] * 8)) ia.imshow(ia.draw_grid(images_aug, cols=8))
def chapter_augmenters_kmeanscolorquantization(): fn_start = "color/kmeanscolorquantization" aug = iaa.KMeansColorQuantization() run_and_save_augseq(fn_start + ".jpg", aug, [ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2) aug = iaa.KMeansColorQuantization(n_colors=8) run_and_save_augseq(fn_start + "_with_8_colors.jpg", aug, [ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2) aug = iaa.KMeansColorQuantization(n_colors=(4, 16)) run_and_save_augseq(fn_start + "_with_random_n_colors.jpg", aug, [ia.quokka(size=(128, 128)) for _ in range(4 * 3)], cols=4, rows=3) aug = iaa.KMeansColorQuantization(from_colorspace=iaa.ChangeColorspace.BGR) quokka_bgr = cv2.cvtColor(ia.quokka(size=(128, 128)), cv2.COLOR_RGB2BGR) run_and_save_augseq(fn_start + "_from_bgr.jpg", aug, [quokka_bgr for _ in range(8)], cols=4, rows=2, image_colorspace="BGR") aug = iaa.KMeansColorQuantization( to_colorspace=[iaa.ChangeColorspace.RGB, iaa.ChangeColorspace.HSV]) run_and_save_augseq(fn_start + "_in_rgb_or_hsv.jpg", aug, [ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2)
def setup_augmentors(self, augmentations): self.augmentors = [] for aug_name, aug_config in augmentations.items(): aug = None if aug_name == 'grayscale': aug = iaa.Grayscale() elif aug_name == 'intensity_multiplier': aug = iaa.Multiply((aug_config.get('min_multiplier', 0.5), aug_config.get('min_multiplier', 1.5))) elif aug_name == 'additive_gaussian_noise': aug = VariableRangeAdditiveGaussianNoise( aug_config.get('min_scale', 0.05), aug_config.get('max_scale', 0.25)) elif aug_name == 'gaussian_blur': aug = iaa.GaussianBlur( sigma=(aug_config.get('sigma_min', 0.0), aug_config.get('sigma_max', 0.0))) elif aug_name == 'defocus': aug = iaa.imgcorruptlike.DefocusBlur( severity=(aug_config.get('min_severity', 1), aug_config.get('min_severity', 3))) elif aug_name == 'fog': aug = iaa.imgcorruptlike.Fog( severity=(aug_config.get('min_severity', 1), aug_config.get('min_severity', 3))) elif aug_name == 'quantization': aug = iaa.KMeansColorQuantization( n_colors=(aug_config.get('min_colors', 32), aug_config.get('max_colors', 64))) elif aug_name == 'contrast': aug = iaa.SigmoidContrast( gain=(aug_config.get('min_gain', 6), aug_config.get('max_gain', 10)), cutoff=(aug_config.get('min_cutoff', 0.2), aug_config.get('max_cutoff', 0.6))) elif aug_name == 'spatter': aug = aug = iaa.imgcorruptlike.Spatter( severity=aug_config.get('severity', 4)) elif aug_name == 'motion_blur': # Note: Ground-truth seems to shift a bit, but imgaug does not implement it aug = iaa.MotionBlur(k=aug_config.get('kernel_size', 15), angle=(aug_config.get('min_angle', -45), aug_config.get('max_angle', 45))) elif aug_name == 'perspective_transform': aug = iaa.PerspectiveTransform( scale=(aug_config.get('min_scale', 0), aug_config.get('max_scale', 0.05))) elif aug_name == 'elastic_transform': # Note: Ground-truth seems to shift a bit, but imgaug does not implement it aug = ElasticTransformCorruption( severity=(aug_config.get('min_severity', 1), aug_config.get('min_severity', 3))) elif aug_name == 'piecewise_affine': # Note: 10X Costly aug = iaa.PiecewiseAffine( scale=(aug_config.get('min_scale', 0), aug_config.get('max_scale', 0.03))) if not aug: continue aug.name, aug.p, aug.base = aug_name, aug_config[ 'probability'], self self.augmentors.append(aug) return
def create_augmenters(height, width, height_augmentable, width_augmentable, only_augmenters): def lambda_func_images(images, random_state, parents, hooks): return images def lambda_func_heatmaps(heatmaps, random_state, parents, hooks): return heatmaps def lambda_func_keypoints(keypoints, random_state, parents, hooks): return keypoints def assertlambda_func_images(images, random_state, parents, hooks): return True def assertlambda_func_heatmaps(heatmaps, random_state, parents, hooks): return True def assertlambda_func_keypoints(keypoints, random_state, parents, hooks): return True augmenters_meta = [ iaa.Sequential([iaa.Noop(), iaa.Noop()], random_order=False, name="Sequential_2xNoop"), iaa.Sequential([iaa.Noop(), iaa.Noop()], random_order=True, name="Sequential_2xNoop_random_order"), iaa.SomeOf((1, 3), [iaa.Noop(), iaa.Noop(), iaa.Noop()], random_order=False, name="SomeOf_3xNoop"), iaa.SomeOf((1, 3), [iaa.Noop(), iaa.Noop(), iaa.Noop()], random_order=True, name="SomeOf_3xNoop_random_order"), iaa.OneOf([iaa.Noop(), iaa.Noop(), iaa.Noop()], name="OneOf_3xNoop"), iaa.Sometimes(0.5, iaa.Noop(), name="Sometimes_Noop"), iaa.WithChannels([1, 2], iaa.Noop(), name="WithChannels_1_and_2_Noop"), iaa.Noop(name="Noop"), iaa.Lambda(func_images=lambda_func_images, func_heatmaps=lambda_func_heatmaps, func_keypoints=lambda_func_keypoints, name="Lambda"), iaa.AssertLambda(func_images=assertlambda_func_images, func_heatmaps=assertlambda_func_heatmaps, func_keypoints=assertlambda_func_keypoints, name="AssertLambda"), iaa.AssertShape((None, height_augmentable, width_augmentable, None), name="AssertShape"), iaa.ChannelShuffle(0.5, name="ChannelShuffle") ] augmenters_arithmetic = [ iaa.Add((-10, 10), name="Add"), iaa.AddElementwise((-10, 10), name="AddElementwise"), #iaa.AddElementwise((-500, 500), name="AddElementwise"), iaa.AdditiveGaussianNoise(scale=(5, 10), name="AdditiveGaussianNoise"), iaa.AdditiveLaplaceNoise(scale=(5, 10), name="AdditiveLaplaceNoise"), iaa.AdditivePoissonNoise(lam=(1, 5), name="AdditivePoissonNoise"), iaa.Multiply((0.5, 1.5), name="Multiply"), iaa.MultiplyElementwise((0.5, 1.5), name="MultiplyElementwise"), iaa.Dropout((0.01, 0.05), name="Dropout"), iaa.CoarseDropout((0.01, 0.05), size_percent=(0.01, 0.1), name="CoarseDropout"), iaa.ReplaceElementwise((0.01, 0.05), (0, 255), name="ReplaceElementwise"), #iaa.ReplaceElementwise((0.95, 0.99), (0, 255), name="ReplaceElementwise"), iaa.SaltAndPepper((0.01, 0.05), name="SaltAndPepper"), iaa.ImpulseNoise((0.01, 0.05), name="ImpulseNoise"), iaa.CoarseSaltAndPepper((0.01, 0.05), size_percent=(0.01, 0.1), name="CoarseSaltAndPepper"), iaa.Salt((0.01, 0.05), name="Salt"), iaa.CoarseSalt((0.01, 0.05), size_percent=(0.01, 0.1), name="CoarseSalt"), iaa.Pepper((0.01, 0.05), name="Pepper"), iaa.CoarsePepper((0.01, 0.05), size_percent=(0.01, 0.1), name="CoarsePepper"), iaa.Invert(0.1, name="Invert"), # ContrastNormalization iaa.JpegCompression((50, 99), name="JpegCompression") ] augmenters_blend = [ iaa.Alpha((0.01, 0.99), iaa.Noop(), name="Alpha"), iaa.AlphaElementwise((0.01, 0.99), iaa.Noop(), name="AlphaElementwise"), iaa.SimplexNoiseAlpha(iaa.Noop(), name="SimplexNoiseAlpha"), iaa.FrequencyNoiseAlpha((-2.0, 2.0), iaa.Noop(), name="FrequencyNoiseAlpha") ] augmenters_blur = [ iaa.GaussianBlur(sigma=(1.0, 5.0), name="GaussianBlur"), iaa.AverageBlur(k=(3, 11), name="AverageBlur"), iaa.MedianBlur(k=(3, 11), name="MedianBlur"), iaa.BilateralBlur(d=(3, 11), name="BilateralBlur"), iaa.MotionBlur(k=(3, 11), name="MotionBlur") ] augmenters_color = [ # InColorspace (deprecated) iaa.WithColorspace(to_colorspace="HSV", children=iaa.Noop(), name="WithColorspace"), iaa.WithHueAndSaturation(children=iaa.Noop(), name="WithHueAndSaturation"), iaa.MultiplyHueAndSaturation((0.8, 1.2), name="MultiplyHueAndSaturation"), iaa.MultiplyHue((-1.0, 1.0), name="MultiplyHue"), iaa.MultiplySaturation((0.8, 1.2), name="MultiplySaturation"), iaa.AddToHueAndSaturation((-10, 10), name="AddToHueAndSaturation"), iaa.AddToHue((-10, 10), name="AddToHue"), iaa.AddToSaturation((-10, 10), name="AddToSaturation"), iaa.ChangeColorspace(to_colorspace="HSV", name="ChangeColorspace"), iaa.Grayscale((0.01, 0.99), name="Grayscale"), iaa.KMeansColorQuantization((2, 16), name="KMeansColorQuantization"), iaa.UniformColorQuantization((2, 16), name="UniformColorQuantization") ] augmenters_contrast = [ iaa.GammaContrast(gamma=(0.5, 2.0), name="GammaContrast"), iaa.SigmoidContrast(gain=(5, 20), cutoff=(0.25, 0.75), name="SigmoidContrast"), iaa.LogContrast(gain=(0.7, 1.0), name="LogContrast"), iaa.LinearContrast((0.5, 1.5), name="LinearContrast"), iaa.AllChannelsCLAHE(clip_limit=(2, 10), tile_grid_size_px=(3, 11), name="AllChannelsCLAHE"), iaa.CLAHE(clip_limit=(2, 10), tile_grid_size_px=(3, 11), to_colorspace="HSV", name="CLAHE"), iaa.AllChannelsHistogramEqualization( name="AllChannelsHistogramEqualization"), iaa.HistogramEqualization(to_colorspace="HSV", name="HistogramEqualization"), ] augmenters_convolutional = [ iaa.Convolve(np.float32([[0, 0, 0], [0, 1, 0], [0, 0, 0]]), name="Convolve_3x3"), iaa.Sharpen(alpha=(0.01, 0.99), lightness=(0.5, 2), name="Sharpen"), iaa.Emboss(alpha=(0.01, 0.99), strength=(0, 2), name="Emboss"), iaa.EdgeDetect(alpha=(0.01, 0.99), name="EdgeDetect"), iaa.DirectedEdgeDetect(alpha=(0.01, 0.99), name="DirectedEdgeDetect") ] augmenters_edges = [iaa.Canny(alpha=(0.01, 0.99), name="Canny")] augmenters_flip = [ iaa.Fliplr(1.0, name="Fliplr"), iaa.Flipud(1.0, name="Flipud") ] augmenters_geometric = [ iaa.Affine(scale=(0.9, 1.1), translate_percent={ "x": (-0.05, 0.05), "y": (-0.05, 0.05) }, rotate=(-10, 10), shear=(-10, 10), order=0, mode="constant", cval=(0, 255), name="Affine_order_0_constant"), iaa.Affine(scale=(0.9, 1.1), translate_percent={ "x": (-0.05, 0.05), "y": (-0.05, 0.05) }, rotate=(-10, 10), shear=(-10, 10), order=1, mode="constant", cval=(0, 255), name="Affine_order_1_constant"), iaa.Affine(scale=(0.9, 1.1), translate_percent={ "x": (-0.05, 0.05), "y": (-0.05, 0.05) }, rotate=(-10, 10), shear=(-10, 10), order=3, mode="constant", cval=(0, 255), name="Affine_order_3_constant"), iaa.Affine(scale=(0.9, 1.1), translate_percent={ "x": (-0.05, 0.05), "y": (-0.05, 0.05) }, rotate=(-10, 10), shear=(-10, 10), order=1, mode="edge", cval=(0, 255), name="Affine_order_1_edge"), iaa.Affine(scale=(0.9, 1.1), translate_percent={ "x": (-0.05, 0.05), "y": (-0.05, 0.05) }, rotate=(-10, 10), shear=(-10, 10), order=1, mode="constant", cval=(0, 255), backend="skimage", name="Affine_order_1_constant_skimage"), # TODO AffineCv2 iaa.PiecewiseAffine(scale=(0.01, 0.05), nb_rows=4, nb_cols=4, order=1, mode="constant", name="PiecewiseAffine_4x4_order_1_constant"), iaa.PiecewiseAffine(scale=(0.01, 0.05), nb_rows=4, nb_cols=4, order=0, mode="constant", name="PiecewiseAffine_4x4_order_0_constant"), iaa.PiecewiseAffine(scale=(0.01, 0.05), nb_rows=4, nb_cols=4, order=1, mode="edge", name="PiecewiseAffine_4x4_order_1_edge"), iaa.PiecewiseAffine(scale=(0.01, 0.05), nb_rows=8, nb_cols=8, order=1, mode="constant", name="PiecewiseAffine_8x8_order_1_constant"), iaa.PerspectiveTransform(scale=(0.01, 0.05), keep_size=False, name="PerspectiveTransform"), iaa.PerspectiveTransform(scale=(0.01, 0.05), keep_size=True, name="PerspectiveTransform_keep_size"), iaa.ElasticTransformation( alpha=(1, 10), sigma=(0.5, 1.5), order=0, mode="constant", cval=0, name="ElasticTransformation_order_0_constant"), iaa.ElasticTransformation( alpha=(1, 10), sigma=(0.5, 1.5), order=1, mode="constant", cval=0, name="ElasticTransformation_order_1_constant"), iaa.ElasticTransformation( alpha=(1, 10), sigma=(0.5, 1.5), order=1, mode="nearest", cval=0, name="ElasticTransformation_order_1_nearest"), iaa.ElasticTransformation( alpha=(1, 10), sigma=(0.5, 1.5), order=1, mode="reflect", cval=0, name="ElasticTransformation_order_1_reflect"), iaa.Rot90((1, 3), keep_size=False, name="Rot90"), iaa.Rot90((1, 3), keep_size=True, name="Rot90_keep_size") ] augmenters_pooling = [ iaa.AveragePooling(kernel_size=(1, 16), keep_size=False, name="AveragePooling"), iaa.AveragePooling(kernel_size=(1, 16), keep_size=True, name="AveragePooling_keep_size"), iaa.MaxPooling(kernel_size=(1, 16), keep_size=False, name="MaxPooling"), iaa.MaxPooling(kernel_size=(1, 16), keep_size=True, name="MaxPooling_keep_size"), iaa.MinPooling(kernel_size=(1, 16), keep_size=False, name="MinPooling"), iaa.MinPooling(kernel_size=(1, 16), keep_size=True, name="MinPooling_keep_size"), iaa.MedianPooling(kernel_size=(1, 16), keep_size=False, name="MedianPooling"), iaa.MedianPooling(kernel_size=(1, 16), keep_size=True, name="MedianPooling_keep_size") ] augmenters_segmentation = [ iaa.Superpixels(p_replace=(0.05, 1.0), n_segments=(10, 100), max_size=64, interpolation="cubic", name="Superpixels_max_size_64_cubic"), iaa.Superpixels(p_replace=(0.05, 1.0), n_segments=(10, 100), max_size=64, interpolation="linear", name="Superpixels_max_size_64_linear"), iaa.Superpixels(p_replace=(0.05, 1.0), n_segments=(10, 100), max_size=128, interpolation="linear", name="Superpixels_max_size_128_linear"), iaa.Superpixels(p_replace=(0.05, 1.0), n_segments=(10, 100), max_size=224, interpolation="linear", name="Superpixels_max_size_224_linear"), iaa.UniformVoronoi(n_points=(250, 1000), name="UniformVoronoi"), iaa.RegularGridVoronoi(n_rows=(16, 31), n_cols=(16, 31), name="RegularGridVoronoi"), iaa.RelativeRegularGridVoronoi(n_rows_frac=(0.07, 0.14), n_cols_frac=(0.07, 0.14), name="RelativeRegularGridVoronoi"), ] augmenters_size = [ iaa.Resize((0.8, 1.2), interpolation="nearest", name="Resize_nearest"), iaa.Resize((0.8, 1.2), interpolation="linear", name="Resize_linear"), iaa.Resize((0.8, 1.2), interpolation="cubic", name="Resize_cubic"), iaa.CropAndPad(percent=(-0.2, 0.2), pad_mode="constant", pad_cval=(0, 255), keep_size=False, name="CropAndPad"), iaa.CropAndPad(percent=(-0.2, 0.2), pad_mode="edge", pad_cval=(0, 255), keep_size=False, name="CropAndPad_edge"), iaa.CropAndPad(percent=(-0.2, 0.2), pad_mode="constant", pad_cval=(0, 255), name="CropAndPad_keep_size"), iaa.Pad(percent=(0.05, 0.2), pad_mode="constant", pad_cval=(0, 255), keep_size=False, name="Pad"), iaa.Pad(percent=(0.05, 0.2), pad_mode="edge", pad_cval=(0, 255), keep_size=False, name="Pad_edge"), iaa.Pad(percent=(0.05, 0.2), pad_mode="constant", pad_cval=(0, 255), name="Pad_keep_size"), iaa.Crop(percent=(0.05, 0.2), keep_size=False, name="Crop"), iaa.Crop(percent=(0.05, 0.2), name="Crop_keep_size"), iaa.PadToFixedSize(width=width + 10, height=height + 10, pad_mode="constant", pad_cval=(0, 255), name="PadToFixedSize"), iaa.CropToFixedSize(width=width - 10, height=height - 10, name="CropToFixedSize"), iaa.KeepSizeByResize(iaa.CropToFixedSize(height=height - 10, width=width - 10), interpolation="nearest", name="KeepSizeByResize_CropToFixedSize_nearest"), iaa.KeepSizeByResize(iaa.CropToFixedSize(height=height - 10, width=width - 10), interpolation="linear", name="KeepSizeByResize_CropToFixedSize_linear"), iaa.KeepSizeByResize(iaa.CropToFixedSize(height=height - 10, width=width - 10), interpolation="cubic", name="KeepSizeByResize_CropToFixedSize_cubic"), ] augmenters_weather = [ iaa.FastSnowyLandscape(lightness_threshold=(100, 255), lightness_multiplier=(1.0, 4.0), name="FastSnowyLandscape"), iaa.Clouds(name="Clouds"), iaa.Fog(name="Fog"), iaa.CloudLayer(intensity_mean=(196, 255), intensity_freq_exponent=(-2.5, -2.0), intensity_coarse_scale=10, alpha_min=0, alpha_multiplier=(0.25, 0.75), alpha_size_px_max=(2, 8), alpha_freq_exponent=(-2.5, -2.0), sparsity=(0.8, 1.0), density_multiplier=(0.5, 1.0), name="CloudLayer"), iaa.Snowflakes(name="Snowflakes"), iaa.SnowflakesLayer(density=(0.005, 0.075), density_uniformity=(0.3, 0.9), flake_size=(0.2, 0.7), flake_size_uniformity=(0.4, 0.8), angle=(-30, 30), speed=(0.007, 0.03), blur_sigma_fraction=(0.0001, 0.001), name="SnowflakesLayer") ] augmenters = (augmenters_meta + augmenters_arithmetic + augmenters_blend + augmenters_blur + augmenters_color + augmenters_contrast + augmenters_convolutional + augmenters_edges + augmenters_flip + augmenters_geometric + augmenters_pooling + augmenters_segmentation + augmenters_size + augmenters_weather) if only_augmenters is not None: augmenters_reduced = [] for augmenter in augmenters: if any([ re.search(pattern, augmenter.name) for pattern in only_augmenters ]): augmenters_reduced.append(augmenter) augmenters = augmenters_reduced return augmenters
def augmentation_of_image(self, test_image, output_path): self.test_image = test_image self.output_path = output_path #define the Augmenters #properties: A range of values signifies that one of these numbers is randmoly chosen for every augmentation for every batch # Apply affine transformations to each image. rotate = iaa.Affine(rotate=(-90, 90)) scale = iaa.Affine(scale={ "x": (0.5, 0.9), "y": (0.5, 0.9) }) translation = iaa.Affine(translate_percent={ "x": (-0.15, 0.15), "y": (-0.15, 0.15) }) shear = iaa.Affine(shear=(-2, 2)) #plagio parallhlogrammo wihthin a range (-8,8) zoom = iaa.PerspectiveTransform( scale=(0.01, 0.15), keep_size=True) # do not change the output size of the image h_flip = iaa.Fliplr(1.0) # flip horizontally all images (100%) v_flip = iaa.Flipud(1.0) #flip vertically all images padding = iaa.KeepSizeByResize( iaa.CropAndPad(percent=(0.05, 0.25)) ) #positive values correspond to padding 5%-25% of the image,but keeping the origial output size of the new image #More augmentations blur = iaa.GaussianBlur( sigma=(0, 1.22) ) # blur images with a sigma 0-2,a number ofthis range is randomly chosen everytime.Low values suggested for this application contrast = iaa.contrast.LinearContrast((0.75, 1.5)) #change the contrast by a factor of 0.75 and 1.5 sampled randomly per image contrast_channels = iaa.LinearContrast( (0.75, 1.5), per_channel=True ) #and for 50% of all images also independently per channel: sharpen = iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)) #sharpen with an alpha from 0(no sharpening) - 1(full sharpening) and change the lightness form 0.75 to 1.5 gauss_noise = iaa.AdditiveGaussianNoise( scale=0.111 * 255, per_channel=True ) #some random gaussian noise might occur in cell images,especially when image quality is poor laplace_noise = iaa.AdditiveLaplaceNoise( scale=(0, 0.111 * 255) ) #we choose to be in a small range, as it is logical for training the cell images #Brightness brightness = iaa.Multiply( (0.35, 1.65 )) #change brightness between 35% or 165% of the original image brightness_channels = iaa.Multiply( (0.5, 1.5), per_channel=0.75 ) # change birghtness for 25% of images.For the remaining 75%, change it, but also channel-wise. #CHANNELS (RGB)=(Red,Green,Blue) red = iaa.WithChannels(0, iaa.Add( (10, 100))) #increase each Red-pixels value within the range 10-100 red_rot = iaa.WithChannels(0, iaa.Affine( rotate=(0, 45))) #rotate each image's red channel by 0-45 degrees green = iaa.WithChannels(1, iaa.Add( (10, 100))) #increase each Green-pixels value within the range 10-100 green_rot = iaa.WithChannels(1, iaa.Affine( rotate=(0, 45))) #rotate each image's green channel by 0-45 degrees blue = iaa.WithChannels(2, iaa.Add( (10, 100))) #increase each Blue-pixels value within the range 10-100 blue_rot = iaa.WithChannels(2, iaa.Affine( rotate=(0, 45))) #rotate each image's blue channel by 0-45 degrees #colors channel_shuffle = iaa.ChannelShuffle(1.0) #shuffle all images of the batch grayscale = iaa.Grayscale(1.0) hue_n_saturation = iaa.MultiplyHueAndSaturation( (0.5, 1.5), per_channel=True ) #change hue and saturation with this range of values for different values add_hue_saturation = iaa.AddToHueAndSaturation( (-50, 50), per_channel=True) #add more hue and saturation to its pixels #Quantize colors using k-Means clustering kmeans_color = iaa.KMeansColorQuantization( n_colors=(4, 16) ) #quantizes to k means 4 to 16 colors (randomly chosen). Quantizes colors up to 16 colors #Alpha Blending blend = iaa.AlphaElementwise((0, 1.0), iaa.Grayscale((0, 1.0))) #blend depending on which value is greater #Contrast augmentors clahe = iaa.CLAHE(tile_grid_size_px=((3, 21), [ 0, 2, 3, 4, 5, 6, 7 ])) #create a clahe contrast augmentor H=(3,21) and W=(0,7) histogram = iaa.HistogramEqualization( ) #performs histogram equalization #Augmentation list of metadata augmentors OneofRed = iaa.OneOf([red]) OneofGreen = iaa.OneOf([green]) OneofBlue = iaa.OneOf([blue]) contrast_n_shit = iaa.OneOf( [contrast, brightness, brightness_channels]) SomeAug = iaa.SomeOf( 2, [rotate, scale, translation, shear, h_flip, v_flip], random_order=True) SomeClahe = iaa.SomeOf( 2, [ clahe, iaa.CLAHE(clip_limit=(1, 10)), iaa.CLAHE(tile_grid_size_px=(3, 21)), iaa.GammaContrast((0.5, 2.0)), iaa.AllChannelsCLAHE(), iaa.AllChannelsCLAHE(clip_limit=(1, 10), per_channel=True) ], random_order=True) #Random selection from clahe augmentors edgedetection = iaa.OneOf([ iaa.EdgeDetect(alpha=(0, 0.7)), iaa.DirectedEdgeDetect(alpha=(0, 0.7), direction=(0.0, 1.0)) ]) # Search in some images either for all edges or for directed edges.These edges are then marked in a black and white image and overlayed with the original image using an alpha of 0 to 0.7. canny_filter = iaa.OneOf([ iaa.Canny(), iaa.Canny(alpha=(0.5, 1.0), sobel_kernel_size=[3, 7]) ]) #choose one of the 2 canny filter options OneofNoise = iaa.OneOf([blur, gauss_noise, laplace_noise]) Color_1 = iaa.OneOf([ channel_shuffle, grayscale, hue_n_saturation, add_hue_saturation, kmeans_color ]) Color_2 = iaa.OneOf([ channel_shuffle, grayscale, hue_n_saturation, add_hue_saturation, kmeans_color ]) Flip = iaa.OneOf([histogram, v_flip, h_flip]) #Define the augmentors used in the DA Augmentors = [ SomeAug, SomeClahe, SomeClahe, edgedetection, sharpen, canny_filter, OneofRed, OneofGreen, OneofBlue, OneofNoise, Color_1, Color_2, Flip, contrast_n_shit ] for i in range(0, 14): img = cv2.imread(test_image) #read you image images = np.array( [img for _ in range(14)], dtype=np.uint8 ) # 12 is the size of the array that will hold 8 different images images_aug = Augmentors[i].augment_images( images ) #alternate between the different augmentors for a test image cv2.imwrite( os.path.join(output_path, test_image + "new" + str(i) + '.jpg'), images_aug[i]) #write all changed images
import numpy as np import imgaug from imgaug import augmenters as I #......................PARAMETERS...........................# seed = 0 augs = [[I.Grayscale(alpha=1.0), I.KMeansColorQuantization(n_colors=5)], [I.KMeansColorQuantization(n_colors=8)], [I.UniformColorQuantization(n_colors=8, max_size=None)], [ I.Grayscale(alpha=1.0), I.UniformColorQuantization(n_colors=8, max_size=None) ], [ I.UniformColorQuantization(n_colors=8, max_size=None), I.Grayscale(alpha=1.0) ], [I.UniformColorQuantization(n_colors=8, max_size=None)]] noises = [[I.AdditiveGaussianNoise(scale=(0, 0.2 * 255))]] #...........................................................# if (seed != 0): imgaug.seed(seed) else: imgaug.seed(np.random.randint(0, 100000))
transformed_image = transform(image=image)['image'] elif augmentation == 'fancy_pca': transform = FancyPCA(always_apply=True, alpha=1.0) transformed_image = transform(image=image)['image'] elif augmentation == 'rgb_shift': transform = RGBShift(always_apply=True) transformed_image = transform(image=image)['image'] elif augmentation == 'change_color_temperature': transform = iaa.ChangeColorTemperature((1100, 10000)) transformed_image = transform(image=image) elif augmentation == 'kmeans_color_quantization': transform = iaa.KMeansColorQuantization() transformed_image = transform(image=image) elif augmentation == 'uniform_color_quantization': transform = iaa.UniformColorQuantization() transformed_image = transform(image=image) elif augmentation == 'channel_shuffle': transform = ChannelShuffle(always_apply=True) transformed_image = transform(image=image)['image'] ## Contrast elif augmentation == 'contrast': transform = iaa.imgcorruptlike.Contrast(severity=2) transformed_image = transform(image=image)
def augment(img_data, config, augment=True): assert 'filepath' in img_data assert 'bboxes' in img_data assert 'width' in img_data assert 'height' in img_data img_data_aug = copy.deepcopy(img_data) aug_list = [] img = cv2.imread(img_data_aug['filepath']) if augment: rows, cols = img.shape[:2] #[START] Pallete Augmentation pallete_augmentation(img=img, img_data=img_data_aug, config=config) #[END] Pallete Augmentation if config.use_horizontal_flips and np.random.randint(0, 2) == 0: img = cv2.flip(img, 1) for bbox in img_data_aug['bboxes']: x1 = bbox['x1'] x2 = bbox['x2'] bbox['x2'] = cols - x1 bbox['x1'] = cols - x2 if config.use_vertical_flips and np.random.randint(0, 2) == 0: img = cv2.flip(img, 0) for bbox in img_data_aug['bboxes']: y1 = bbox['y1'] y2 = bbox['y2'] bbox['y2'] = rows - y1 bbox['y1'] = rows - y2 if config.rot_90: angle = np.random.choice([0, 90, 180, 270], 1)[0] if angle == 270: img = np.transpose(img, (1, 0, 2)) img = cv2.flip(img, 0) elif angle == 180: img = cv2.flip(img, -1) elif angle == 90: img = np.transpose(img, (1, 0, 2)) img = cv2.flip(img, 1) elif angle == 0: pass for bbox in img_data_aug['bboxes']: x1 = bbox['x1'] x2 = bbox['x2'] y1 = bbox['y1'] y2 = bbox['y2'] if angle == 270: bbox['x1'] = y1 bbox['x2'] = y2 bbox['y1'] = cols - x2 bbox['y2'] = cols - x1 elif angle == 180: bbox['x2'] = cols - x1 bbox['x1'] = cols - x2 bbox['y2'] = rows - y1 bbox['y1'] = rows - y2 elif angle == 90: bbox['x1'] = rows - y2 bbox['x2'] = rows - y1 bbox['y1'] = x1 bbox['y2'] = x2 elif angle == 0: pass if config.color: aug_list.append( np.random.choice([ iaa.MultiplyHueAndSaturation((0.5, 1.5), per_channel=True), iaa.AddToHueAndSaturation((-50, 50), per_channel=True), iaa.KMeansColorQuantization(), iaa.UniformColorQuantization(), iaa.Grayscale(alpha=(0.0, 1.0)) ])) if config.contrast: aug_list.append( np.random.choice([ iaa.GammaContrast((0.5, 2.0), per_channel=True), iaa.SigmoidContrast(gain=(3, 10), cutoff=(0.4, 0.6), per_channel=True), iaa.LogContrast(gain=(0.6, 1.4), per_channel=True), iaa.LinearContrast((0.4, 1.6), per_channel=True), iaa.AllChannelsCLAHE(clip_limit=(1, 10), per_channel=True), iaa.AllChannelsHistogramEqualization(), iaa.HistogramEqualization() ])) ## Augmentation aug = iaa.SomeOf((0, None), aug_list, random_order=True) seq = iaa.Sequential(aug) img = seq.augment_image(img) ## img_data_aug['width'] = img.shape[1] img_data_aug['height'] = img.shape[0] return img_data_aug, img