def _lapGauss3(y,sigma): N = int(4*sigma+1) x = N*np.linspace(-1,1.,N) h = np.exp(-x**2/2./sigma**2) h*= 1./np.sum(h) hx = (x**2/sigma**2-1.)/sigma**2*h outx = imgtools.convolve_sep3(y,hx,h,h) outy = imgtools.convolve_sep3(y,h,hx,h) outz = imgtools.convolve_sep3(y,h,h,hx) return outx+outy+outz
def _lapGauss3(y, sigma): N = int(4 * sigma + 1) x = N * np.linspace(-1, 1., N) h = np.exp(-x**2 / 2. / sigma**2) h *= 1. / np.sum(h) hx = (x**2 / sigma**2 - 1.) / sigma**2 * h outx = imgtools.convolve_sep3(y, hx, h, h) outy = imgtools.convolve_sep3(y, h, hx, h) outz = imgtools.convolve_sep3(y, h, h, hx) return outx + outy + outz
def apply(self,data): x = np.linspace(-1.,1.,self.size) h = np.exp(-4.*x**2) h *= 1./sum(h) print "datatype: ",data.dtype return imgtools.convolve_sep3(data, h, h, h)