Exemple #1
0
 def test_UnbinnedLH(self):
     f = gaussian
     assert list(describe(f)) == ['x', 'mean', 'sigma']
     lh = UnbinnedLH(gaussian, self.data, )
     assert list(describe(lh)) == ['mean', 'sigma']
     assert_allclose(lh(0, 1), 28188.201229348757)
     minuit = iminuit.Minuit(lh)
     assert_allclose(minuit.errordef, 0.5)
Exemple #2
0
 def test_BinnedChi2(self):
     f = gaussian
     assert list(describe(f)) == ['x', 'mean', 'sigma']
     lh = BinnedChi2(gaussian, self.data, bound=[-3, 3])
     assert list(describe(lh)) == ['mean', 'sigma']
     assert_allclose(lh(0, 1), 19951.005399882044, atol=1)
     minuit = iminuit.Minuit(lh)
     assert_allclose(minuit.errordef, 1.0)
Exemple #3
0
 def test_BinnedChi2(self):
     f = gaussian
     assert_equal(list(describe(f)), ['x', 'mean', 'sigma'])
     lh = BinnedChi2(gaussian, self.data, bound=[-3, 3])
     assert_equal(list(describe(lh)), ['mean', 'sigma'])
     assert_almost_equal(lh(0, 1), 19951.005399882044, 1)
     minuit = iminuit.Minuit(lh)
     assert_equal(minuit.errordef, 1.0)
Exemple #4
0
 def test_BinnedChi2(self):
     f = gaussian
     assert list(describe(f)) == ['x', 'mean', 'sigma']
     lh = BinnedChi2(gaussian, self.data, bound=[-3, 3])
     assert list(describe(lh)) == ['mean', 'sigma']
     assert_allclose(lh(0, 1), 19951.005399882044, atol=1)
     minuit = iminuit.Minuit(lh)
     assert_allclose(minuit.errordef, 1.0)
Exemple #5
0
 def test_BinnedChi2(self):
     f = gaussian
     assert_equal(list(describe(f)), ['x', 'mean', 'sigma'])
     lh = BinnedChi2(gaussian, self.data, bound=[-3, 3])
     assert_equal(list(describe(lh)), ['mean', 'sigma'])
     assert_almost_equal(lh(0, 1), 19951.005399882044, 1)
     minuit = iminuit.Minuit(lh)
     assert_equal(minuit.errordef, 1.0)
Exemple #6
0
 def test_UnbinnedLH(self):
     f = gaussian
     assert_equal(list(describe(f)), ['x', 'mean', 'sigma'])
     lh = UnbinnedLH(gaussian, self.data,)
     assert_equal(list(describe(lh)), ['mean', 'sigma'])
     assert_almost_equal(lh(0, 1), 28188.201229348757)
     minuit = iminuit.Minuit(lh)
     assert_equal(minuit.errordef, 0.5)
Exemple #7
0
 def test_BinnedLH(self):
     # write a better test... this depends on subtraction
     f = gaussian
     assert list(describe(f)) == ["x", "mean", "sigma"]
     lh = BinnedLH(gaussian, self.data, bound=[-3, 3])
     assert list(describe(lh)) == ["mean", "sigma"]
     assert_allclose(lh(0, 1), 20.446130781601543, atol=1)
     minuit = iminuit.Minuit(lh)
     assert_allclose(minuit.errordef, 0.5)
Exemple #8
0
 def test_BinnedLH(self):
     # write a better test... this depends on subtraction
     f = gaussian
     assert list(describe(f)) == ['x', 'mean', 'sigma']
     lh = BinnedLH(gaussian, self.data, bound=[-3, 3])
     assert list(describe(lh)) == ['mean', 'sigma']
     assert_allclose(lh(0, 1), 20.446130781601543, atol=1)
     minuit = iminuit.Minuit(lh)
     assert_allclose(minuit.errordef, 0.5)
Exemple #9
0
 def test_BinnedLH(self):
     # write a better test... this depends on subtraction
     f = gaussian
     assert_equal(list(describe(f)), ['x', 'mean', 'sigma'])
     lh = BinnedLH(gaussian, self.data, bound=[-3, 3])
     assert_equal(list(describe(lh)), ['mean', 'sigma'])
     assert_almost_equal(lh(0, 1), 20.446130781601543, 1)
     minuit = iminuit.Minuit(lh)
     assert_equal(minuit.errordef, 0.5)
Exemple #10
0
 def test_UnbinnedLH(self):
     f = gaussian
     assert_equal(list(describe(f)), ['x', 'mean', 'sigma'])
     lh = UnbinnedLH(
         gaussian,
         self.data,
     )
     assert_equal(list(describe(lh)), ['mean', 'sigma'])
     assert_almost_equal(lh(0, 1), 28188.201229348757)
     minuit = iminuit.Minuit(lh)
     assert_equal(minuit.errordef, 0.5)
Exemple #11
0
 def test_UnbinnedLH(self):
     f = gaussian
     assert list(describe(f)) == ['x', 'mean', 'sigma']
     lh = UnbinnedLH(
         gaussian,
         self.data,
     )
     assert list(describe(lh)) == ['mean', 'sigma']
     assert_allclose(lh(0, 1), 28188.201229348757)
     minuit = iminuit.Minuit(lh)
     assert_allclose(minuit.errordef, 0.5)
Exemple #12
0
def test_polynomial():
    p = pdf.Polynomial(1)
    assert describe(p) == ['x', 'c_0', 'c_1']
    assert_allclose(p(2, 2, 1), 4)
    integral = p.integrate((0, 1), 1, 2, 1)
    assert_allclose(integral, 2.5)

    p = pdf.Polynomial(2)
    assert describe(p) == ['x', 'c_0', 'c_1', 'c_2']
    assert_allclose(p(2, 3, 4, 5), 31)
    integral = p.integrate((2, 10), 10, 1, 2, 3)
    analytical = 8 + 2 / 2. * (10 ** 2 - 2 ** 2) + 3 / 3. * (10 ** 3 - 2 ** 3)
    assert_allclose(integral, analytical)
Exemple #13
0
def test_polynomial():
    p = pdf.Polynomial(1)
    assert_equal(describe(p), ['x', 'c_0', 'c_1'])
    assert_equal(p(2, 2, 1), 4)
    integral = p.integrate((0, 1), 1, 2, 1)
    assert_equal(integral, 2.5)

    p = pdf.Polynomial(2)
    assert_equal(describe(p), ['x', 'c_0', 'c_1', 'c_2'])
    assert_equal(p(2, 3, 4, 5), 31)
    integral = p.integrate((2, 10), 10, 1, 2, 3)
    analytical = 8 + 2 / 2.*(10 ** 2 - 2 ** 2) + 3 / 3.*(10 ** 3 - 2 ** 3)    
    assert_equal(integral, analytical)
Exemple #14
0
    def test_Chi2Regression(self):
        x = np.linspace(1, 10, 10)
        y = 10 * x + 1
        f = linear
        assert list(describe(f)) == ["x", "m", "c"]

        lh = Chi2Regression(f, x, y)

        assert list(describe(lh)) == ["m", "c"]

        assert_allclose(lh(10, 1), 0)

        assert_allclose(lh(10, 0), 10.0)
        minuit = iminuit.Minuit(lh)
        assert_allclose(minuit.errordef, 1.0)
Exemple #15
0
    def test_Chi2Regression(self):
        x = np.linspace(1, 10, 10)
        y = 10 * x + 1
        f = linear
        assert_equal(list(describe(f)), ['x', 'm', 'c'])

        lh = Chi2Regression(f, x, y)

        assert_equal(list(describe(lh)), ['m', 'c'])

        assert_almost_equal(lh(10, 1), 0)

        assert_almost_equal(lh(10, 0), 10.)
        minuit = iminuit.Minuit(lh)
        assert_equal(minuit.errordef, 1.0)
Exemple #16
0
    def test_Chi2Regression(self):
        x = np.linspace(1, 10, 10)
        y = 10 * x + 1
        f = linear
        assert list(describe(f)) == ['x', 'm', 'c']

        lh = Chi2Regression(f, x, y)

        assert list(describe(lh)) == ['m', 'c']

        assert_allclose(lh(10, 1), 0)

        assert_allclose(lh(10, 0), 10.)
        minuit = iminuit.Minuit(lh)
        assert_allclose(minuit.errordef, 1.0)
Exemple #17
0
def merge_func_code(*arg):

    """
    merge function arguments.::
        def f(x,y,z): return do_something(x,y,z)
        def g(x,z,p): return do_something(x,y,z)
        fc, pos = merge_func_code(f,g)
        #fc is now ('x','y','z','p')
    """

    all_arg = []
    for i, f in enumerate(arg):
        tmp = []
        first = False
        for vn in describe(f):
            newv = vn
            first = False
            tmp.append(newv)
        all_arg.append(tmp)

    #FIXME: do something smarter
    merge_arg = []
    for a in all_arg:
        for v in a:
            if v not in merge_arg:
                merge_arg.append(v)

    #build the map list of numpy int array
    pos = []
    for a in all_arg:
        tmp = []
        for v in a:
            tmp.append(merge_arg.index(v))
        pos.append(np.array(tmp, dtype=np.int))
    return MinimalFuncCode(merge_arg), pos
Exemple #18
0
 def __init__(self, model, x, y, dx, dy):
     self.model = model  # model predicts y value for given x value
     self.x = np.array(x)  # the x values
     self.y = np.array(y)  # the y values
     self.dx = np.array(dx)  # the x-axis uncertainties
     self.dy = np.array(dy)  # the y-axis uncertainties
     self.func_code = make_func_code(describe(self.model)[1:])
    def __init__(self,
                 f,
                 data,
                 weights=None,
                 bound=None,
                 badvalue=-100000,
                 extended=False,
                 extended_bound=None,
                 extended_nint=100):

        if bound is not None:
            data = np.array(data)
            mask = (data >= bound[0]) & (data <= bound[1])
            data = data[mask]
            if (weights is not None):
                weights = weights[mask]

        self.f = f  # model predicts PDF for given x
        self.data = np.array(data)
        self.weights = set_var_if_None(weights, self.data)
        self.bad_value = badvalue

        self.extended = extended
        self.extended_bound = extended_bound
        self.extended_nint = extended_nint
        if extended and extended_bound is None:
            self.extended_bound = (np.min(data), np.max(data))

        self.func_code = make_func_code(describe(self.f)[1:])
Exemple #20
0
def _validate_minuit_args(cost_func: Union[cost_function.CostFunctionBase, cost_function.SimultaneousFit],
                          minuit_args: T_FitArguments) -> None:
    """ Validate the arguments provided for Minuit.

    Checks that there are sufficient and valid arguments for each parameter in the fit function.

    Args:
        cost_func: Cost function to be used with Minuit.
        minuit_args: Arguments for minuit. Need to set the initial value, limits, and error (step)
            of each parameter.
    Returns:
        None. An exception is raised if there's a problem with any of the arguments.
    """
    # Need the parameters in the function to check the arguments. Recall that "x" is skipped because it's a cost
    # function (which is useful, because we want to skip x since it's not a parameter).
    parameters = iminuit.describe(cost_func)
    # Loop over the available parameters because each one needs to be specified in the Minuit args.
    for p in parameters:
        if p in minuit_args:
            if f"limit_{p}" not in minuit_args:
                raise ValueError(f"Limits on parameter '{p}' must be specified.")
            if f"error_{p}" not in minuit_args:
                raise ValueError(f"Initial error on parameter '{p}' must be specified.")
            # If p and limit_p and error_p were specified, then the parameter is fully specified.
        elif p.replace("fix", "") in minuit_args:
            # The parameter is fixed and therefore needs no further specification.
            pass
        else:
            # The parameter wasn't specified.
            raise ValueError(f"Parameter '{p}' must be specified in the fit arguments.")
Exemple #21
0
def test_doublecrystalball():
    assert describe(pdf.doublecrystalball) == [
        "x",
        "alpha",
        "alpha2",
        "n",
        "n2",
        "mean",
        "sigma",
    ]
    assert_allclose(pdf.doublecrystalball(10, 1, 1, 2, 2, 10, 2), 1.0)
    assert_allclose(pdf.doublecrystalball(11, 1, 1, 2, 2, 10, 2),
                    0.8824969025845955)
    assert_allclose(pdf.doublecrystalball(12, 1, 1, 2, 2, 10, 2),
                    0.6065306597126334)
    assert_allclose(pdf.doublecrystalball(14, 1, 1, 2, 2, 10, 2),
                    0.26956918209450376)
    assert_allclose(pdf.doublecrystalball(6, 1, 1, 2, 2, 10, 2),
                    0.26956918209450376)
    assert_allclose(pdf.doublecrystalball(-10, 1, 5, 3, 4, 10, 2),
                    0.00947704155801)
    assert_allclose(pdf.doublecrystalball(0, 1, 5, 3, 4, 10, 2),
                    0.047744395954055)
    assert_allclose(pdf.doublecrystalball(11, 1, 5, 3, 4, 10, 2),
                    0.8824969025846)
    assert_allclose(pdf.doublecrystalball(20, 1, 5, 3, 4, 10, 2),
                    0.0000037266531720786)
    assert_allclose(pdf.doublecrystalball(25, 1, 5, 3, 4, 10, 2),
                    0.00000001287132228271)
Exemple #22
0
def fit_fmpe(x, y, y_err, init_params, limit_params):

    chi2 = Chi2Regression(fmpe_pdf_10, x=x, y=y, error=y_err)

    bin_width = np.diff(x)
    bin_width = np.mean(bin_width)
    params = describe(fmpe_pdf_10, verbose=False)[1:]
    fixed_params = {}

    for param in params:

        if param not in init_params.keys():

            fixed_params['fix_{}'.format(param)] = True

    m = Minuit(
        chi2,
        **init_params,
        **limit_params,
        **fixed_params,
        bin_width=bin_width,
        print_level=0,
        pedantic=False,
    )
    m.migrad()

    return m
Exemple #23
0
def test_crystalball():
    assert describe(pdf.crystalball) == ['x', 'alpha', 'n', 'mean', 'sigma']
    assert_allclose(pdf.crystalball(10, 1, 2, 10, 2), 1.)
    assert_allclose(pdf.crystalball(11, 1, 2, 10, 2), 0.8824969025845955)
    assert_allclose(pdf.crystalball(12, 1, 2, 10, 2), 0.6065306597126334)
    assert_allclose(pdf.crystalball(14, 1, 2, 10, 2), 0.1353352832366127)
    assert_allclose(pdf.crystalball(6, 1, 2, 10, 2), 0.26956918209450376)
Exemple #24
0
def test_crystalball():
    assert describe(pdf.crystalball) == ["x", "alpha", "n", "mean", "sigma"]
    assert_allclose(pdf.crystalball(10, 1, 2, 10, 2), 1.0)
    assert_allclose(pdf.crystalball(11, 1, 2, 10, 2), 0.8824969025845955)
    assert_allclose(pdf.crystalball(12, 1, 2, 10, 2), 0.6065306597126334)
    assert_allclose(pdf.crystalball(14, 1, 2, 10, 2), 0.1353352832366127)
    assert_allclose(pdf.crystalball(6, 1, 2, 10, 2), 0.26956918209450376)
Exemple #25
0
def test_doublegaussian():
    assert_equal(tuple(describe(pdf.doublegaussian)),
                 ('x', 'mean', 'sigma_L', 'sigma_R'))
    assert_almost_equal(pdf.doublegaussian(0., 0., 1., 2.), 1.)
    assert_almost_equal(pdf.doublegaussian(-1., 0., 1., 2.),
                        0.6065306597126334)
    assert_almost_equal(pdf.doublegaussian(1., 0., 1., 2.), 0.8824969025845955)
Exemple #26
0
 def __init__(self, f, data):
     self.f = f
     self.data = data
     f_sig = describe(f)
     # this is how you fake function
     # signature dynamically
     self.func_code = make_func_code(f_sig[1:]) # docking off independent variable
     self.func_defaults = None # this keeps np.vectorize happy
 def __init__(self, model, x, y, cov_inv, regulator=0, regulator_val=1):
     self.model = model
     self.regulator = regulator
     self.regulator_val = regulator_val
     self.x = np.array(x)
     self.y = np.array(y)
     self.cov_inv = np.array(cov_inv)
     self.func_code = make_func_code(describe(self.model)[1:])
Exemple #28
0
def test_crystalball():
    assert_equal(tuple(describe(pdf.crystalball)),
                 ('x', 'alpha', 'n', 'mean', 'sigma'))
    assert_almost_equal(pdf.crystalball(10, 1, 2, 10, 2), 1.)
    assert_almost_equal(pdf.crystalball(11, 1, 2, 10, 2), 0.8824969025845955)
    assert_almost_equal(pdf.crystalball(12, 1, 2, 10, 2), 0.6065306597126334)
    assert_almost_equal(pdf.crystalball(14, 1, 2, 10, 2), 0.1353352832366127)
    assert_almost_equal(pdf.crystalball(6, 1, 2, 10, 2), 0.26956918209450376)
Exemple #29
0
def test_crystalball():
    assert_equal(tuple(describe(pdf.crystalball)),
                ('x', 'alpha', 'n', 'mean', 'sigma'))
    assert_almost_equal(pdf.crystalball(10, 1, 2, 10, 2), 1.)
    assert_almost_equal(pdf.crystalball(11, 1, 2, 10, 2), 0.8824969025845955)
    assert_almost_equal(pdf.crystalball(12, 1, 2, 10, 2), 0.6065306597126334)
    assert_almost_equal(pdf.crystalball(14, 1, 2, 10, 2), 0.1353352832366127)
    assert_almost_equal(pdf.crystalball(6, 1, 2, 10, 2), 0.26956918209450376)
Exemple #30
0
 def __init__(self, f, x, y, y_err):
     self.x = x
     self.y = y
     self.y_err = y_err
     self.f = f
     args = describe(f)  # extract function signature
     self.func_code = Struct(
         co_varnames=args[1:],  # dock off independent param
         co_argcount=len(args) - 1)
Exemple #31
0
def test_cruijff():
    assert describe(pdf.cruijff) == ['x', 'm_0', 'sigma_L', 'sigma_R', 'alpha_L', 'alpha_R']
    val = pdf.cruijff(0, 0, 1., 2., 1., 2.)
    assert_allclose(val, 1.)
    vl = pdf.cruijff(0, 1, 1., 1., 2., 2.)
    vr = pdf.cruijff(2, 1, 1., 1., 2., 2.)
    assert_allclose(vl, vr)
    assert_allclose(vl, 0.7788007830714)
    assert_allclose(vr, 0.7788007830714)
Exemple #32
0
 def __init__(self, f, x, y, sy=None, weights=None):
     
     self.f = f  # model predicts y for given x
     self.x = np.array(x)
     self.y = np.array(y)
     
     self.sy = set_var_if_None(sy, self.x)
     self.weights = set_var_if_None(weights, self.x)
     self.func_code = make_func_code(describe(self.f)[1:])
Exemple #33
0
    def __init__(self, data1D, func):
        self.data = data1D
        self.pdf = func

        # take function signature
        func_signature = iminuit.describe(func)

        # overwrite func_code to provide func signature
        self.func_code = iminuit.util.make_func_code(func_signature[1:])
    def __init__(self,
                 f,
                 data,
                 bins=40,
                 weights=None,
                 weighterrors=None,
                 bound=None,
                 badvalue=1000000,
                 extended=False,
                 use_w2=False,
                 nint_subdiv=1):

        if bound is not None:
            data = np.array(data)
            mask = (data >= bound[0]) & (data <= bound[1])
            data = data[mask]
            if (weights is not None):
                weights = weights[mask]
            if (weighterrors is not None):
                weighterrors = weighterrors[mask]

        self.weights = set_var_if_None(weights, data)

        self.f = f
        self.use_w2 = use_w2
        self.extended = extended

        if bound is None:
            bound = (np.min(data), np.max(data))

        self.mymin, self.mymax = bound

        h, self.edges = np.histogram(data, bins, range=bound, weights=weights)

        self.bins = bins
        self.h = h
        self.N = np.sum(self.h)

        if weights is not None:
            if weighterrors is None:
                self.w2, _ = np.histogram(data,
                                          bins,
                                          range=bound,
                                          weights=weights**2)
            else:
                self.w2, _ = np.histogram(data,
                                          bins,
                                          range=bound,
                                          weights=weighterrors**2)
        else:
            self.w2, _ = np.histogram(data, bins, range=bound, weights=None)

        self.badvalue = badvalue
        self.nint_subdiv = nint_subdiv

        self.func_code = make_func_code(describe(self.f)[1:])
        self.ndof = np.sum(self.h > 0) - (self.func_code.co_argcount - 1)
Exemple #35
0
 def __init__(self,f,x,y):
     self.f = f
     self.x = x
     self.y = y
     f_sig = describe(f)
     #this is how you fake function 
     #signature dynamically
     self.func_code = make_func_code(f_sig[1:])#docking off independent variable
     self.func_defaults = None #this keeps np.vectorize happy
Exemple #36
0
def test_cruijff():
    iterable_equal(tuple(describe(pdf.cruijff)),
                   ('x', 'm_0', 'sigma_L', 'sigma_R', 'alpha_L', 'alpha_R'))
    val = pdf.cruijff(0, 0, 1., 2., 1., 2.)
    assert_almost_equal(val, 1.)
    vl = pdf.cruijff(0, 1, 1., 1., 2., 2.)
    vr = pdf.cruijff(2, 1, 1., 1., 2., 2.)
    assert_almost_equal(vl, vr, msg='symmetric test')
    assert_almost_equal(vl, 0.7788007830714)
    assert_almost_equal(vr, 0.7788007830714)
Exemple #37
0
def test_cruijff():
    iterable_equal(tuple(describe(pdf.cruijff)),
        ('x', 'm_0', 'sigma_L', 'sigma_R', 'alpha_L', 'alpha_R'))
    val = pdf.cruijff(0, 0, 1., 2., 1., 2.)
    assert_almost_equal(val, 1.)
    vl = pdf.cruijff(0, 1, 1., 1., 2., 2.)
    vr = pdf.cruijff(2, 1, 1., 1., 2., 2.)
    assert_almost_equal(vl, vr, msg='symmetric test')
    assert_almost_equal(vl, 0.7788007830714)
    assert_almost_equal(vr, 0.7788007830714)
Exemple #38
0
 def __init__(self, model, x, y, dx, dy):
     self.model = model  # model predicts y value for given x value
     self.x = np.array(x)  # the x values
     self.y = np.array(y)  # the y values
     self.dx = np.array(dx)  # the x-axis uncertainties
     self.dy = np.array(dy)  # the y-axis uncertainties
     self.func_code = make_func_code(describe(self.model)[1:])
     self.h = (
         x[-1] - x[0]
     ) / 10000  # this is the step size for the numerical calculation of the df/dx = last value in x (x[-1]) - first value in x (x[0])/10000
Exemple #39
0
def PerformFitToBKG():

    print 'About to start MINUIT '

    stepSigma = 0.01
    m = Minuit(Chi2_BKG,
               v2_t=0.20,
               limit_v2_t=(0, 0.50),
               error_v2_t=0.01,
               v2_a=0.10,
               limit_v2_a=(0, 0.50),
               error_v2_a=0.01,
               v4_t=0.05,
               limit_v4_t=(0, 0.10),
               error_v4_t=0.01,
               v4_a=0.05,
               limit_v4_a=(0, 0.10),
               error_v4_a=0.01,
               V3=0,
               limit_V3=(0, 0.1),
               error_V3=0.01,
               B=2.0,
               limit_B=(0.1, 10.0),
               error_B=0.01)
    m.migrad()
    print ' Describe ', describe(m)
    #m.minos()

    #print ' values'
    #print(m.values)  # {'x': 2,'y': 3,'z': 4}
    #print ' errors'
    #print(m.errors)  # {'x': 1,'y': 1,'z': 1}

    #print('covariance', m.covariance)
    #print('matrix()', m.matrix()) #covariance
    #print('matrix(correlation=True)', m.matrix(correlation=True)) #correlation
    #m.print_matrix() #correlation
    axes = {}

    f, (axes["Inplane"], axes["Midplane"], axes["Outplane"],
        axes["AllAngles"]) = plt.subplots(1, 4, sharex=True, sharey=True)

    for key in data.keys():
        x = data[key]["Bkg"]["x_center"]  #
        y = data[key]["Bkg"]["y"]
        dy = data[key]["Bkg"]["dy"]
        axes[key].errorbar(x, y, yerr=dy, fmt='o')
        xfit = np.linspace(-0.5, 1.5, num=50, endpoint=True)
        model = Background(xfit, m.values, phi_s[key], c[key])
        axes[key].plot(xfit, model, '-r')  ##plot fit function
        x = data[key]["All"]["x_center"]
        y = data[key]["All"]["y"]
        dy = data[key]["All"]["dy"]
        axes[key].errorbar(x, y, yerr=dy, fmt='o')
    plt.show()
Exemple #40
0
def test_johnsonSU():
    assert describe(pdf.johnsonSU), ["x", "mean", "sigma", "nu", "tau"]
    assert_allclose(pdf.johnsonSU(1.0, 1.0, 1.0, 1.0, 1.0), 0.5212726124342)
    assert_allclose(pdf.johnsonSU(1.0, 2.0, 1.0, 1.0, 1.0), 0.1100533373219)
    assert_allclose(pdf.johnsonSU(1.0, 2.0, 2.0, 1.0, 1.0), 0.4758433826682)

    j = pdf.johnsonSU
    assert hasattr(j, "integrate")
    integral = j.integrate((-100, 100), 0, 1.0, 1.0, 1.0, 1.0)
    assert_allclose(integral, 1.0)
    integral = j.integrate((0, 2), 0, 1.0, 1.0, 1.0, 1.0)
    assert_allclose(integral, 0.8837311663857358)
Exemple #41
0
 def __init__(self,f,x,y):
     self.f = f
     self.x = x
     self.y = y
     f_sig = describe(f)
     #this is how you fake function 
     #signature dynamically
     self.func_code = Struct(
                             co_varnames = f_sig[1:], #dock off independent variable
                             co_argcount = len(f_sig)-1
                             )
     self.func_defaults = None #this keeps np.vectorize happy
Exemple #42
0
    def __init__(self, chi2, q_bins, dG, m_P, m_D, m_Pr, t0, num_var):
        self.chi2 = chi2
        self.q_bins = q_bins
        self.dG = dG
        self.m_P = m_P
        self.m_D = m_D
        self.m_Pr = m_Pr
        self.t0 = t0
        self.num_var = num_var

        args = minuit.describe(chi2)
        self.func_code = minuit.Struct(
                co_varnames = args[len(args)-self.num_var:],
                co_argcount = len(args)-self.num_var
            )
Exemple #43
0
 def test_simultaneous(self):
     np.random.seed(0)
     data = np.random.randn(10000)
     shifted = data + 3.
     g1 = rename(gaussian, ['x', 'lmu', 'sigma'])
     g2 = rename(gaussian, ['x', 'rmu', 'sigma'])
     ulh1 = UnbinnedLH(g1, data)
     ulh2 = UnbinnedLH(g2, shifted)
     sim = SimultaneousFit(ulh1, ulh2)
     assert describe(sim) == ['lmu', 'sigma', 'rmu']
     minuit = iminuit.Minuit(sim, sigma=1.2, pedantic=False, print_level=0)
     minuit.migrad()
     assert minuit.migrad_ok()
     assert_allclose(minuit.values['lmu'], 0., atol=2 * minuit.errors['lmu'])
     assert_allclose(minuit.values['rmu'], 3., atol=2 * minuit.errors['rmu'])
     assert_allclose(minuit.values['sigma'], 1., atol=2 * minuit.errors['sigma'])
Exemple #44
0
    def _setup_fitter_kwargs(self, fitarg, kwargs=None):
        """Setup initial fitter kwargs

        Use this to pass default fitargs and parameter names to Minuit.
        This allows to initialize a Model class with only a fitfunc and no
        boilerplate chi2 function.
        """

        # This gurantees correct oder and names of fitparameters
        # we start at 1 because running value (x or t) must be skipped
        self.parameter_names = describe(self.fit_func)[1:]
        # The oder of parameters is important
        fitarg['forced_parameters'] = self.parameter_names
        if not kwargs:
            kwargs = {}
        if not kwargs.get('fitarg'):
            kwargs['fitarg'] = {}
        kwargs['fitarg'] = {**fitarg, **kwargs['fitarg']}

        # DODO add check that fitargs and parameter_names fit together

        return kwargs
Exemple #45
0
    def fit_dist(self,data,pinit = {}, error = {}, fix = {}, limit = {}):

	self.data	 = data

	pars = iminuit.describe(self.func)

	if not len(fix.keys()):
	    for k in pars:
		fix[k] = 0
	if not len(pinit.keys()):
	    for k in pars:
		pinit[k] = 1.
	if not len(error.keys()):
	    for k in pars:
		error[k] = pinit[k] * self.int_steps
	if not len(limit.keys()):
	    for k in pars:
		limit[k] = [pinit[k] / 1e5, pinit[k] * 1e5]

	fitarg = {}
	for k in pars:
	    fitarg[k] = pinit[k]
	    fitarg['error_{0:s}'.format(k)] = error[k]
	    fitarg['fix_{0:s}'.format(k)] = fix[k]
	    fitarg['limit_{0:s}'.format(k)] = limit[k]

	m		= iminuit.Minuit(self.func, 
			    errordef = self.errordef, pedantic = self.pedantic, print_level = self.print_level,
			    **fitarg
			    )
	m.tol		= self.tol
	m.strategy	= self.strategy

	m.migrad(ncall = self.ncall)

	return (kstest(self.data,self.distr,args = m.values.values(), mode = self.ksmode)), m.values, m.errors
Exemple #46
0
def test_poly2():
    assert_equal(describe(pdf.poly2), ['x', 'a', 'b', 'c'])
    assert_almost_equal(pdf.poly2(2, 3, 4, 5), 25)
Exemple #47
0
def test_linear():
    assert_equal(describe(pdf.linear), ['x', 'm', 'c'])
    assert_almost_equal(pdf.linear(1, 2, 3), 5)
    assert(hasattr(pdf.linear, 'integrate'))
    integral = pdf.linear.integrate((0., 1.), 1, 1, 1)
    assert_equal(integral, 1.5)
Exemple #48
0
def test_argus():
    assert_equal(tuple(describe(pdf.argus)), ('x', 'c', 'chi', 'p'))
    assert_almost_equal(pdf.argus(6., 10, 2, 3), 0.004373148605400128)
    assert_almost_equal(pdf.argus(10., 10, 2, 3), 0.)
    assert_almost_equal(pdf.argus(8., 10, 2, 3), 0.0018167930603254737)
Exemple #49
0
def test_poly2():
    assert describe(pdf.poly2) == ['x', 'a', 'b', 'c']
    assert_allclose(pdf.poly2(2, 3, 4, 5), 25)
Exemple #50
0
def test_doublegaussian():
    assert_equal(
        tuple(describe(pdf.doublegaussian)), ('x', 'mean', 'sigma_L', 'sigma_R'))
    assert_almost_equal(pdf.doublegaussian(0., 0., 1., 2.), 1.)
    assert_almost_equal(pdf.doublegaussian(-1., 0., 1., 2.), 0.6065306597126334)
    assert_almost_equal(pdf.doublegaussian(1., 0., 1., 2.), 0.8824969025845955)
Exemple #51
0
def test_cauchy():
    assert_equal(describe(pdf.cauchy), ['x', 'm', 'gamma'])
    assert_almost_equal(pdf.cauchy(1, 1, 1.), 0.3183098861837907)
    assert_almost_equal(pdf.cauchy(1, 1, 2.), 0.15915494309189535)
    assert_almost_equal(pdf.cauchy(1, 2, 4.), 0.07489644380795074)
Exemple #52
0
def test_rtv_breitwigner():
    assert_equal(describe(pdf.rtv_breitwigner), ['x', 'm', 'gamma'])
    assert_almost_equal(pdf.rtv_breitwigner(1, 1, 1.), 0.8194496535636714)
    assert_almost_equal(pdf.rtv_breitwigner(1, 1, 2.), 0.5595531041435416)
    assert_almost_equal(pdf.rtv_breitwigner(1, 2, 3.), 0.2585302502852219)
Exemple #53
0
def test_novosibirsk():
    assert_equal(describe(pdf.novosibirsk), ['x', 'width', 'peak', 'tail'])
    assert_almost_equal(pdf.novosibirsk(3, 2, 3, 4), 1.1253517471925912e-07)
Exemple #54
0
def test_poly3():
    assert_equal(describe(pdf.poly3), ['x', 'a', 'b', 'c', 'd'])
    assert_almost_equal(pdf.poly3(2, 3, 4, 5, 6), 56.)
Exemple #55
0
# 
# We know easily that the answer has is
# $x=1$, $y=2$, $z=3$ and the minimum value should be $-1$

# <codecell>

def f(x,y,z):
    return (x-1.)**2 + (y-2*x)**2 + (z-3.*x)**2 -1.

# <markdowncell>

# iminuit relies on Python introspection. If you wonder what kind of function iminuit sees, you can use

# <codecell>

describe(f) 

# <markdowncell>

# ###Contruct Minuit Object
# To minimize we need to construct a Minuit object

# <codecell>

m=Minuit(f, x=2, error_x=0.2, limit_x=(-10.,10.), y=3., fix_y=True, print_level=1)

# <markdowncell>

# The initial value/error are optional but it's nice to do it
# and here is how to use it
# 
Exemple #56
0
def test_ugaussian():
    assert_equal(tuple(describe(pdf.ugaussian)), ('x', 'mean', 'sigma'))
    assert_almost_equal(pdf.ugaussian(0, 0, 1), 1.)
    assert_almost_equal(pdf.ugaussian(-1, 0, 1), 0.6065306597126334)
    assert_almost_equal(pdf.ugaussian(1, 0, 1), 0.6065306597126334)
Exemple #57
0
def test_gaussian():
    assert_equal(tuple(describe(pdf.gaussian)), ('x', 'mean', 'sigma'))
    assert_almost_equal(pdf.gaussian(0, 0, 1), 0.3989422804014327)
    assert_almost_equal(pdf.gaussian(-1, 0, 1), 0.24197072451914337)
    assert_almost_equal(pdf.gaussian(1, 0, 1), 0.24197072451914337)
from iminuit import Minuit, describe

# <codecell>

%load_ext inumpy

# <codecell>

#define a functino to minimize
def f(x,y,z):
    return (x-2)**2 + (y-3)**2 + (z-4)**2

# <codecell>

#iminuit relies on python introspection to read function signature
describe(f) # one of the most useful function from iminuit

# <codecell>

#notice here that it automatically knows about x,y,z
#no RooRealVar etc. needed here
m = Minuit(f)
#it warns about every little thing that might go wrong

# <codecell>

#the most frequently asked question is Does my fit converge
#also look at your console it print progress if you use print_level=2
m.migrad();

# <markdowncell>