def test_store_load(self): x = np.array([[1, 0, 0], [0, 1, 1], [1, 1, 1], [0, 1, 1]]) y = {"default": np.array(['a', "b", "c", "a"])} svm = SVM() svm._fit(sparse.csr_matrix(x), y["default"]) path = EnvironmentSettings.root_path / "test/tmp/store_load_sklearn/" details_path = EnvironmentSettings.root_path / "test/tmp/store_load_sklearn/details.yaml" svm.store(path=path, details_path=details_path) svm2 = SVM() svm2.load(path=path, details_path=details_path) shutil.rmtree(path)
def test_store(self): x = np.array([[1, 0, 0], [0, 1, 1], [1, 1, 1], [0, 1, 1]]) y = {"default": np.array(['a', "b", "c", "a"])} svm = SVM() svm.fit(EncodedData(x, y), 'default') path = EnvironmentSettings.root_path / "my_svm/" svm.store(path) self.assertTrue(os.path.isfile(path / "svm.pickle")) with open(path / "svm.pickle", "rb") as file: svm2 = pickle.load(file) self.assertTrue(isinstance(svm2, SVC)) shutil.rmtree(path)
def test_store(self): x = np.array([[1, 0, 0], [0, 1, 1], [1, 1, 1], [0, 1, 1]]) y = {"default": np.array(['a', "b", "c", "a"])} svm = SVM() svm._fit(sparse.csr_matrix(x), y["default"]) path = EnvironmentSettings.root_path / "test/tmp/storesklearn/" svm.store(path) self.assertTrue(os.path.isfile(path / "svm.pickle")) with open(path / "svm.pickle", "rb") as file: svm2 = pickle.load(file) self.assertTrue(isinstance(svm2, SVC)) shutil.rmtree(path)