Exemple #1
0
    def test_io(self):
        """Data can be uploaded and downloaded from internal GeoServer
        """

        # Upload a raster and a vector data set
        for filename in ['population_padang_1.asc', 'lembang_schools.shp']:
            basename, ext = os.path.splitext(filename)
            filename = os.path.join(TESTDATA, filename)

            layer = save_to_geonode(filename, user=self.user, overwrite=True)

            # Name checking
            layer_name = layer.name
            expected_name = basename.lower()
            msg = 'Expected layername %s but got %s' % (expected_name,
                                                        layer_name)
            assert layer_name == expected_name, msg

            workspace = layer.workspace

            msg = 'Expected workspace to be "geonode". Got %s' % workspace
            assert workspace == 'geonode'

            # Check metadata
            assert_bounding_box_matches(layer, filename)

            # Download layer again using workspace:name
            bbox = get_bounding_box(filename)
            downloaded_layer = download(INTERNAL_SERVER_URL,
                                        '%s:%s' % (workspace, layer_name),
                                        bbox)
            assert os.path.exists(downloaded_layer.filename)
Exemple #2
0
    def XXtest_shakemap_population_exposure(self):
        """Population exposed to groundshaking matches USGS numbers
        """

        hazardfile = os.path.join(TEST_DATA, 'shakemap_sumatra_20110129.tif')
        hazard_layer = save_to_geonode(hazardfile, overwrite=True,
                                       user=self.user)
        hazard_name = '%s:%s' % (hazard_layer.workspace, hazard_layer.name)

        exposurefile = os.path.join(TEST_DATA, 'population_indonesia_2008.tif')
        exposure_layer = save_to_geonode(exposurefile, overwrite=True,
                                         user=self.user)
        exposure_name = '%s:%s' % (exposure_layer.workspace,
                                   exposure_layer.name)


        #with warnings.catch_warnings():
        #    warnings.simplefilter('ignore')

        c = Client()
        rv = c.post('/api/v1/calculate/', data=dict(
                hazard_server=INTERNAL_SERVER_URL,
                hazard=hazard_name,
                exposure_server=INTERNAL_SERVER_URL,
                exposure=exposure_name,
                bbox=get_bounding_box_string(hazardfile),
                impact_function='USGSFatalityFunction',
                impact_level=10,
                keywords='test,shakemap,usgs',
                ))

        self.assertEqual(rv.status_code, 200)
        self.assertEqual(rv['Content-Type'], 'application/json')
        data = json.loads(rv.content)
        assert 'hazard_layer' in data.keys()
        assert 'exposure_layer' in data.keys()
        assert 'run_duration' in data.keys()
        assert 'run_date' in data.keys()
        assert 'layer' in data.keys()

        # Download result and check
        layer_name = data['layer'].split('/')[-1]

        result_layer = download(INTERNAL_SERVER_URL,
                                layer_name,
                                get_bounding_box(hazardfile))
        assert os.path.exists(result_layer.filename)

        # Read hazard data for reference
        hazard_raster = read_layer(hazardfile)
        H = hazard_raster.get_data()
        mmi_min, mmi_max = hazard_raster.get_extrema()

        # Read calculated result
        impact_raster = read_layer(result_layer.filename)
        I = impact_raster.get_data()
Exemple #3
0
    def test_io(self):
        """Data can be uploaded and downloaded from internal GeoServer
        """

        # Upload a raster and a vector data set
        for filename in ['lembang_mmi_hazmap.asc', 'lembang_schools.shp']:
            basename, ext = os.path.splitext(filename)

            filename = os.path.join(TEST_DATA, filename)
            layer = save_to_geonode(filename, user=self.user)

            # Name checking
            layer_name = layer.name
            workspace = layer.workspace

            msg = 'Expected workspace to be "geonode". Got %s' % workspace
            assert workspace == 'geonode'

            msg = 'Expected layer name to be "geonode". Got %s' % workspace
            assert workspace == 'geonode', msg

            # Check metadata
            assert isinstance(layer.geographic_bounding_box, basestring)

            # Exctract bounding bounding box from layer handle
            s = 'POLYGON(('
            i = layer.geographic_bounding_box.find(s) + len(s)
            assert i > len(s)

            j = layer.geographic_bounding_box.find('))')
            assert j > i

            bbox_string = str(layer.geographic_bounding_box[i:j])
            A = numpy.array([[float(x[0]), float(x[1])] for x in
                             (p.split() for p in bbox_string.split(','))])
            south = min(A[:, 1])
            north = max(A[:, 1])
            west = min(A[:, 0])
            east = max(A[:, 0])
            bbox = [west, south, east, north]

            # Check correctness of bounding box against reference
            ref_bbox = get_bounding_box(filename)

            msg = ('Bounding box from layer handle "%s" was not as expected.\n'
                   'Got %s, expected %s' % (layer_name, bbox, ref_bbox))
            assert numpy.allclose(bbox, ref_bbox), msg

            # Download layer again using workspace:name
            downloaded_layer = download(INTERNAL_SERVER_URL,
                                        layer_name,
                                        bbox)
            assert os.path.exists(downloaded_layer.filename)
Exemple #4
0
    def XXtest_shakemap_population_exposure(self):
        """Population exposed to groundshaking matches USGS numbers
        """

        hazardfile = os.path.join(TESTDATA, 'shakemap_sumatra_20110129.tif')
        hazard_layer = save_to_geonode(hazardfile, overwrite=True,
                                       user=self.user)
        hazard_name = '%s:%s' % (hazard_layer.workspace, hazard_layer.name)

        exposurefile = os.path.join(TESTDATA, 'population_indonesia_2008.tif')
        exposure_layer = save_to_geonode(exposurefile, overwrite=True,
                                         user=self.user)
        exposure_name = '%s:%s' % (exposure_layer.workspace,
                                   exposure_layer.name)

        #with warnings.catch_warnings():
        #    warnings.simplefilter('ignore')
        c = Client()
        rv = c.post('/impact/api/calculate/', data=dict(
                hazard_server=INTERNAL_SERVER_URL,
                hazard=hazard_name,
                exposure_server=INTERNAL_SERVER_URL,
                exposure=exposure_name,
                bbox=get_bounding_box_string(hazardfile),
                impact_function='USGSFatalityFunction',
                keywords='test,shakemap,usgs'))

        self.assertEqual(rv.status_code, 200)
        self.assertEqual(rv['Content-Type'], 'application/json')
        data = json.loads(rv.content)
        assert 'hazard_layer' in data.keys()
        assert 'exposure_layer' in data.keys()
        assert 'run_duration' in data.keys()
        assert 'run_date' in data.keys()
        assert 'layer' in data.keys()

        # Download result and check
        layer_name = data['layer'].split('/')[-1]

        result_layer = download(INTERNAL_SERVER_URL,
                                layer_name,
                                get_bounding_box(hazardfile))
        assert os.path.exists(result_layer.filename)

        # Read hazard data for reference
        hazard_raster = read_layer(hazardfile)
        H = hazard_raster.get_data()
        mmi_min, mmi_max = hazard_raster.get_extrema()

        # Read calculated result
        impact_raster = read_layer(result_layer.filename)
        I = impact_raster.get_data()
Exemple #5
0
    def test_native_raster_resolution(self):
        """Raster layer retains native resolution through Geoserver

        Raster layer can be uploaded and downloaded again with
        native resolution. This is one test for ticket #103
        """

        hazard_filename = ('%s/maumere_aos_depth_20m_land_wgs84.asc' %
                           TESTDATA)

        # Get reference values
        H = read_layer(hazard_filename)
        A_ref = H.get_data(nan=True)
        depth_min_ref, depth_max_ref = H.get_extrema()

        # Upload to internal geonode
        hazard_layer = save_to_geonode(hazard_filename, user=self.user)
        hazard_name = '%s:%s' % (hazard_layer.workspace, hazard_layer.name)

        # Download data again with native resolution
        bbox = get_bounding_box_string(hazard_filename)
        H = download(INTERNAL_SERVER_URL, hazard_name, bbox)
        A = H.get_data(nan=True)

        # Compare shapes
        msg = ('Shape of downloaded raster was [%i, %i]. '
               'Expected [%i, %i].' %
               (A.shape[0], A.shape[1], A_ref.shape[0], A_ref.shape[1]))
        assert numpy.allclose(A_ref.shape, A.shape, rtol=0, atol=0), msg

        # Compare extrema to values reference values (which have also been
        # verified by QGIS for this layer and tested in test_engine.py)
        depth_min, depth_max = H.get_extrema()
        msg = ('Extrema of downloaded file were [%f, %f] but '
               'expected [%f, %f]' %
               (depth_min, depth_max, depth_min_ref, depth_max_ref))
        assert numpy.allclose([depth_min, depth_max],
                              [depth_min_ref, depth_max_ref],
                              rtol=1.0e-6,
                              atol=1.0e-10), msg

        # Compare data number by number
        assert nanallclose(A, A_ref, rtol=1.0e-8)
    def Xtest_raster_upload(self):
        """Raster layer can be uploaded and downloaded again correctly
        """

        hazard_filename = ('%s/maumere_aos_depth_20m_land_wgs84.asc'
                           % TESTDATA)

        # Get reference values
        H = read_layer(hazard_filename)
        A_ref = H.get_data()
        depth_min_ref, depth_max_ref = H.get_extrema()

        # Upload to internal geonode
        hazard_layer = save_to_geonode(hazard_filename, user=self.user)
        hazard_name = '%s:%s' % (hazard_layer.workspace, hazard_layer.name)

        # Download data again
        bbox = get_bounding_box_string(hazard_filename)
        H = download(INTERNAL_SERVER_URL, hazard_name, bbox)
        A = H.get_data()

        # Compare shapes
        msg = ('Shape of downloaded raster was [%i, %i]. '
               'Expected [%i, %i].' % (A.shape[0], A.shape[1],
                                       A_ref.shape[0], A_ref.shape[1]))
        assert numpy.allclose(A_ref.shape, A.shape, rtol=0, atol=0), msg

        # Compare extrema to values reference values (which have also been
        # verified by QGIS for this layer and tested in test_engine.py)
        depth_min, depth_max = H.get_extrema()
        msg = ('Extrema of downloaded file were [%f, %f] but '
               'expected [%f, %f]' % (depth_min, depth_max,
                                      depth_min_ref, depth_max_ref))
        assert numpy.allclose([depth_min, depth_max],
                              [depth_min_ref, depth_max_ref],
                              rtol=1.0e-6, atol=1.0e-10), msg
Exemple #7
0
    def test_data_resampling_example(self):
        """Raster data is unchanged when going through geonode

        """

        # Name file names for hazard level, exposure and expected fatalities
        hazard_filename = ('%s/maumere_aos_depth_20m_land_wgs84.asc'
                           % TESTDATA)
        exposure_filename = ('%s/maumere_pop_prj.shp' % TESTDATA)

        #------------
        # Hazard data
        #------------
        # Read hazard input data for reference
        H_ref = read_layer(hazard_filename)

        A_ref = H_ref.get_data()
        depth_min_ref, depth_max_ref = H_ref.get_extrema()

        # Upload to internal geonode
        hazard_layer = save_to_geonode(hazard_filename, user=self.user)
        hazard_name = '%s:%s' % (hazard_layer.workspace, hazard_layer.name)

        # Download data again
        bbox = get_bounding_box_string(hazard_filename)  # The biggest
        H = download(INTERNAL_SERVER_URL, hazard_name, bbox)

        A = H.get_data()
        depth_min, depth_max = H.get_extrema()

        # FIXME (Ole): The layer read from file is single precision only:
        # Issue #17
        # Here's the explanation why interpolation below produce slightly
        # different results (but why?)
        # The layer read from file is single precision which may be due to
        # the way it is converted from ASC to TIF. In other words the
        # problem may be in raster.write_to_file. Float64 is
        # specified there, so this is a mystery.
        #print 'A', A.dtype          # Double precision
        #print 'A_ref', A_ref.dtype  # Single precision

        # Compare extrema to values from numpy array
        assert numpy.allclose(depth_max, numpy.nanmax(A),
                              rtol=1.0e-12, atol=1.0e-12)

        assert numpy.allclose(depth_max_ref, numpy.nanmax(A_ref),
                              rtol=1.0e-12, atol=1.0e-12)

        # Compare to reference
        assert numpy.allclose([depth_min, depth_max],
                              [depth_min_ref, depth_max_ref],
                              rtol=1.0e-12, atol=1.0e-12)

        # Compare extrema to values read off QGIS for this layer
        assert numpy.allclose([depth_min, depth_max], [0.0, 16.68],
                              rtol=1.0e-6, atol=1.0e-10)

        # Investigate difference visually
        #from matplotlib.pyplot import matshow, show
        #matshow(A)
        #matshow(A_ref)
        #matshow(A - A_ref)
        #show()

        #print
        for i in range(A.shape[0]):
            for j in range(A.shape[1]):
                if not numpy.isnan(A[i, j]):
                    err = abs(A[i, j] - A_ref[i, j])
                    if err > 0:
                        msg = ('%i, %i: %.15f, %.15f, %.15f'
                               % (i, j, A[i, j], A_ref[i, j], err))
                        raise Exception(msg)
                    #if A[i,j] > 16:
                    #    print i, j, A[i, j], A_ref[i, j]

        # Compare elements (nan & numbers)
        id_nan = numpy.isnan(A)
        id_nan_ref = numpy.isnan(A_ref)
        assert numpy.all(id_nan == id_nan_ref)
        assert numpy.allclose(A[-id_nan], A_ref[-id_nan],
                              rtol=1.0e-15, atol=1.0e-15)

        #print 'MAX', A[245, 283], A_ref[245, 283]
        #print 'MAX: %.15f %.15f %.15f' %(A[245, 283], A_ref[245, 283])
        assert numpy.allclose(A[245, 283], A_ref[245, 283],
                              rtol=1.0e-15, atol=1.0e-15)

        #--------------
        # Exposure data
        #--------------
        # Read exposure input data for reference
        E_ref = read_layer(exposure_filename)

        # Upload to internal geonode
        exposure_layer = save_to_geonode(exposure_filename, user=self.user)
        exposure_name = '%s:%s' % (exposure_layer.workspace,
                                   exposure_layer.name)

        # Download data again
        E = download(INTERNAL_SERVER_URL, exposure_name, bbox)

        # Check exposure data against reference
        coordinates = E.get_geometry()
        coordinates_ref = E_ref.get_geometry()
        assert numpy.allclose(coordinates, coordinates_ref,
                              rtol=1.0e-12, atol=1.0e-12)

        attributes = E.get_data()
        attributes_ref = E_ref.get_data()
        for i, att in enumerate(attributes):
            att_ref = attributes_ref[i]
            for key in att:
                assert att[key] == att_ref[key]

        # Test riab's interpolation function
        I = H.interpolate(E, name='depth')
        icoordinates = I.get_geometry()

        I_ref = H_ref.interpolate(E_ref, name='depth')
        icoordinates_ref = I_ref.get_geometry()

        assert numpy.allclose(coordinates,
                              icoordinates,
                              rtol=1.0e-12, atol=1.0e-12)
        assert numpy.allclose(coordinates,
                              icoordinates_ref,
                              rtol=1.0e-12, atol=1.0e-12)

        iattributes = I.get_data()
        assert numpy.allclose(icoordinates, coordinates)

        N = len(icoordinates)
        assert N == 891

        # Set tolerance for single precision until issue #17 has been fixed
        # It appears that the single precision leads to larger interpolation
        # errors
        rtol_issue17 = 2.0e-3
        atol_issue17 = 1.0e-4

        # Verify interpolated values with test result
        for i in range(N):

            interpolated_depth_ref = I_ref.get_data()[i]['depth']
            interpolated_depth = iattributes[i]['depth']

            assert nanallclose(interpolated_depth,
                               interpolated_depth_ref,
                               rtol=rtol_issue17, atol=atol_issue17)

            pointid = attributes[i]['POINTID']

            if pointid == 263:

                #print i, pointid, attributes[i],
                #print interpolated_depth, coordinates[i]

                # Check that location is correct
                assert numpy.allclose(coordinates[i],
                                      [122.20367299, -8.61300358],
                                      rtol=1.0e-7, atol=1.0e-12)

                # This is known to be outside inundation area so should
                # near zero
                assert numpy.allclose(interpolated_depth, 0.0,
                                      rtol=1.0e-12, atol=1.0e-12)

            if pointid == 148:
                # Check that location is correct
                #print coordinates[i]
                assert numpy.allclose(coordinates[i],
                                      [122.2045912, -8.608483265],
                                      rtol=1.0e-7, atol=1.0e-12)

                # This is in an inundated area with a surrounding depths of
                # 4.531, 3.911
                # 2.675, 2.583
                assert interpolated_depth < 4.531
                assert interpolated_depth < 3.911
                assert interpolated_depth > 2.583
                assert interpolated_depth > 2.675

                #print interpolated_depth
                # This is a characterisation test for bilinear interpolation
                assert numpy.allclose(interpolated_depth, 3.62477215491,
                                      rtol=rtol_issue17, atol=1.0e-12)

            # Check that interpolated points are within range
            msg = ('Interpolated depth %f at point %i was outside extrema: '
                   '[%f, %f]. ' % (interpolated_depth, i,
                                   depth_min, depth_max))

            if not numpy.isnan(interpolated_depth):
                assert depth_min <= interpolated_depth <= depth_max, msg
Exemple #8
0
    def test_lembang_building_examples(self):
        """Lembang building impact calculation works through the API
        """

        # Test for a range of hazard layers

        for mmi_filename in ['lembang_mmi_hazmap.asc']:
                             #'Lembang_Earthquake_Scenario.asc']:

            # Upload input data
            hazardfile = os.path.join(TESTDATA, mmi_filename)
            hazard_layer = save_to_geonode(hazardfile, user=self.user)
            hazard_name = '%s:%s' % (hazard_layer.workspace, hazard_layer.name)

            exposurefile = os.path.join(TESTDATA, 'lembang_schools.shp')
            exposure_layer = save_to_geonode(exposurefile, user=self.user)
            exposure_name = '%s:%s' % (exposure_layer.workspace,
                                       exposure_layer.name)

            # Call calculation routine

            # FIXME (Ole): The system freaks out if there are spaces in
            #              bbox string. Please let us catch that and deal
            #              nicely with it - also do this in download()
            bbox = '105.592,-7.809,110.159,-5.647'

            #print
            #print get_bounding_box(hazardfile)
            #print get_bounding_box(exposurefile)

            with warnings.catch_warnings():
                warnings.simplefilter('ignore')

                c = Client()
                rv = c.post('/impact/api/calculate/', data=dict(
                        hazard_server=INTERNAL_SERVER_URL,
                        hazard=hazard_name,
                        exposure_server=INTERNAL_SERVER_URL,
                        exposure=exposure_name,
                        bbox=bbox,
                        impact_function='Earthquake Building Damage Function',
                        keywords='test,schools,lembang',
                        ))

            self.assertEqual(rv.status_code, 200)
            self.assertEqual(rv['Content-Type'], 'application/json')
            data = json.loads(rv.content)
            assert 'hazard_layer' in data.keys()
            assert 'exposure_layer' in data.keys()
            assert 'run_duration' in data.keys()
            assert 'run_date' in data.keys()
            assert 'layer' in data.keys()

            # Download result and check
            layer_name = data['layer'].split('/')[-1]

            result_layer = download(INTERNAL_SERVER_URL,
                                    layer_name,
                                    bbox)
            assert os.path.exists(result_layer.filename)

            # Read hazard data for reference
            hazard_raster = read_layer(hazardfile)
            A = hazard_raster.get_data()
            mmi_min, mmi_max = hazard_raster.get_extrema()

            # Read calculated result
            impact_vector = read_layer(result_layer.filename)
            coordinates = impact_vector.get_geometry()
            attributes = impact_vector.get_data()

            # Verify calculated result
            count = 0
            for i in range(len(attributes)):
                lon, lat = coordinates[i][:]
                calculated_mmi = attributes[i]['MMI']

                if calculated_mmi == 0.0:
                    # FIXME (Ole): Some points have MMI==0 here.
                    # Weird but not a show stopper
                    continue

                # Check that interpolated points are within range
                msg = ('Interpolated mmi %f was outside extrema: '
                       '[%f, %f] at location '
                       '[%f, %f]. ' % (calculated_mmi,
                                       mmi_min, mmi_max,
                                       lon, lat))
                assert mmi_min <= calculated_mmi <= mmi_max, msg

                # Check calculated damage
                calculated_dam = attributes[i]['DAMAGE']

                ref_dam = lembang_damage_function(calculated_mmi)
                msg = ('Calculated damage was not as expected '
                       'for hazard layer %s' % hazardfile)
                assert numpy.allclose(calculated_dam, ref_dam,
                                      rtol=1.0e-12), msg

                count += 1

            # Make only a few points were 0
            assert count > len(attributes) - 4
Exemple #9
0
    def test_padang_building_examples(self):
        """Padang building impact calculation works through the API
        """

        # Test for a range of hazard layers
        for mmi_filename in ['Shakemap_Padang_2009.asc']:
            #'Lembang_Earthquake_Scenario.asc']:

            # Upload input data
            hazardfile = os.path.join(TESTDATA, mmi_filename)
            hazard_layer = save_to_geonode(hazardfile, user=self.user)
            hazard_name = '%s:%s' % (hazard_layer.workspace, hazard_layer.name)

            exposurefile = os.path.join(TESTDATA, 'Padang_WGS84.shp')
            exposure_layer = save_to_geonode(exposurefile, user=self.user)
            exposure_name = '%s:%s' % (exposure_layer.workspace,
                                       exposure_layer.name)

            # Call calculation routine

            # FIXME (Ole): The system freaks out if there are spaces in
            #              bbox string. Please let us catch that and deal
            #              nicely with it - also do this in download()
            bbox = '96.956, -5.51, 104.63933, 2.289497'

            with warnings.catch_warnings():
                warnings.simplefilter('ignore')

                c = Client()
                rv = c.post('/impact/api/calculate/', data=dict(
                            hazard_server=INTERNAL_SERVER_URL,
                            hazard=hazard_name,
                            exposure_server=INTERNAL_SERVER_URL,
                            exposure=exposure_name,
                            bbox=bbox,
                            impact_function='Padang Earthquake ' \
                                            'Building Damage Function',
                            keywords='test,buildings,padang',
                            ))

                self.assertEqual(rv.status_code, 200)
                self.assertEqual(rv['Content-Type'], 'application/json')
                data = json.loads(rv.content)
                assert 'hazard_layer' in data.keys()
                assert 'exposure_layer' in data.keys()
                assert 'run_duration' in data.keys()
                assert 'run_date' in data.keys()
                assert 'layer' in data.keys()

                # Download result and check
                layer_name = data['layer'].split('/')[-1]

                result_layer = download(INTERNAL_SERVER_URL, layer_name, bbox)
                assert os.path.exists(result_layer.filename)

                # Read hazard data for reference
                hazard_raster = read_layer(hazardfile)
                A = hazard_raster.get_data()
                mmi_min, mmi_max = hazard_raster.get_extrema()

                # Read calculated result
                impact_vector = read_layer(result_layer.filename)
                coordinates = impact_vector.get_geometry()
                attributes = impact_vector.get_data()

                # Verify calculated result
                count = 0
                verified_count = 0
                for i in range(len(attributes)):
                    lon, lat = coordinates[i][:]
                    calculated_mmi = attributes[i]['MMI']

                    if calculated_mmi == 0.0:
                        # FIXME (Ole): Some points have MMI==0 here.
                        # Weird but not a show stopper
                        continue

                    # Check that interpolated points are within range
                    msg = ('Interpolated mmi %f was outside extrema: '
                           '[%f, %f] at location '
                           '[%f, %f]. ' %
                           (calculated_mmi, mmi_min, mmi_max, lon, lat))
                    assert mmi_min <= calculated_mmi <= mmi_max, msg

                    building_class = attributes[i]['TestBLDGCl']

                    # Check calculated damage
                    calculated_dam = attributes[i]['DAMAGE']
                    verified_dam = padang_check_results(
                        calculated_mmi, building_class)
                    #print calculated_mmi, building_class, calculated_dam
                    if verified_dam:
                        msg = ('Calculated damage was not as expected '
                               'for hazard layer %s. I got %f '
                               'but expected %f' %
                               (hazardfile, calculated_dam, verified_dam))
                        assert numpy.allclose(calculated_dam,
                                              verified_dam,
                                              rtol=1.0e-4), msg
                        verified_count += 1
                    count += 1

                msg = ('No points was verified in output. Please create '
                       'table withe reference data')
                assert verified_count > 0, msg
                msg = 'Number buildings was not 3896.'
                assert count == 3896, msg
Exemple #10
0
    def test_padang_building_examples(self):
        """Padang building impact calculation works through the API
        """

        # Test for a range of hazard layers
        for mmi_filename in ['Shakemap_Padang_2009.asc']:
                               #'Lembang_Earthquake_Scenario.asc']:

            # Upload input data
            hazardfile = os.path.join(TESTDATA, mmi_filename)
            hazard_layer = save_to_geonode(hazardfile, user=self.user)
            hazard_name = '%s:%s' % (hazard_layer.workspace,
                                        hazard_layer.name)

            exposurefile = os.path.join(TESTDATA, 'Padang_WGS84.shp')
            exposure_layer = save_to_geonode(exposurefile, user=self.user)
            exposure_name = '%s:%s' % (exposure_layer.workspace,
                                          exposure_layer.name)

            # Call calculation routine

            # FIXME (Ole): The system freaks out if there are spaces in
            #              bbox string. Please let us catch that and deal
            #              nicely with it - also do this in download()
            bbox = '96.956, -5.51, 104.63933, 2.289497'

            with warnings.catch_warnings():
                warnings.simplefilter('ignore')

                c = Client()
                rv = c.post('/impact/api/calculate/', data=dict(
                            hazard_server=INTERNAL_SERVER_URL,
                            hazard=hazard_name,
                            exposure_server=INTERNAL_SERVER_URL,
                            exposure=exposure_name,
                            bbox=bbox,
                            impact_function='Padang Earthquake ' \
                                            'Building Damage Function',
                            keywords='test,buildings,padang',
                            ))

                self.assertEqual(rv.status_code, 200)
                self.assertEqual(rv['Content-Type'], 'application/json')
                data = json.loads(rv.content)
                assert 'hazard_layer' in data.keys()
                assert 'exposure_layer' in data.keys()
                assert 'run_duration' in data.keys()
                assert 'run_date' in data.keys()
                assert 'layer' in data.keys()

                # Download result and check
                layer_name = data['layer'].split('/')[-1]

                result_layer = download(INTERNAL_SERVER_URL,
                                       layer_name,
                                       bbox)
                assert os.path.exists(result_layer.filename)

                # Read hazard data for reference
                hazard_raster = read_layer(hazardfile)
                A = hazard_raster.get_data()
                mmi_min, mmi_max = hazard_raster.get_extrema()

                # Read calculated result
                impact_vector = read_layer(result_layer.filename)
                coordinates = impact_vector.get_geometry()
                attributes = impact_vector.get_data()

                # Verify calculated result
                count = 0
                verified_count = 0
                for i in range(len(attributes)):
                    lon, lat = coordinates[i][:]
                    calculated_mmi = attributes[i]['MMI']

                    if calculated_mmi == 0.0:
                        # FIXME (Ole): Some points have MMI==0 here.
                        # Weird but not a show stopper
                        continue

                    # Check that interpolated points are within range
                    msg = ('Interpolated mmi %f was outside extrema: '
                           '[%f, %f] at location '
                           '[%f, %f]. ' % (calculated_mmi,
                                           mmi_min, mmi_max,
                                           lon, lat))
                    assert mmi_min <= calculated_mmi <= mmi_max, msg

                    building_class = attributes[i]['TestBLDGCl']

                    # Check calculated damage
                    calculated_dam = attributes[i]['DAMAGE']
                    verified_dam = padang_check_results(calculated_mmi,
                                                        building_class)
                    #print calculated_mmi, building_class, calculated_dam
                    if verified_dam:
                        msg = ('Calculated damage was not as expected '
                                 'for hazard layer %s. I got %f '
                               'but expected %f' % (hazardfile,
                                                    calculated_dam,
                                                    verified_dam))
                        assert numpy.allclose(calculated_dam, verified_dam,
                                               rtol=1.0e-4), msg
                        verified_count += 1
                    count += 1

                msg = ('No points was verified in output. Please create '
                       'table withe reference data')
                assert verified_count > 0, msg
                msg = 'Number buildings was not 3896.'
                assert count == 3896, msg
Exemple #11
0
def calculate(request, save_output=dummy_save):
    start = datetime.datetime.now()

    if request.method == 'GET':
        # FIXME: Add a basic form here to be able to generate the POST request.
        return HttpResponse('This should be accessed by robots, not humans.'
                            'In other words using HTTP POST instead of GET.')
    elif request.method == 'POST':
        data = request.POST
        impact_function_name = data['impact_function']
        hazard_server = data['hazard_server']
        hazard_layer = data['hazard']
        exposure_server = data['exposure_server']
        exposure_layer = data['exposure']
        bbox = data['bbox']
        keywords = data['keywords']


    theuser = get_guaranteed_valid_user(request.user)

    plugin_list = get_plugins(impact_function_name)
    _, impact_function = plugin_list[0].items()[0]
    impact_function_source = inspect.getsource(impact_function)

    # Create entry in database
    calculation = Calculation(user=theuser,
                              run_date=start,
                              hazard_server=hazard_server,
                              hazard_layer=hazard_layer,
                              exposure_server='exposure_server',
                              exposure_layer='exposure_layer',
                              impact_function=impact_function_name,
                              impact_function_source=impact_function_source,
                              bbox=bbox,
                              success=False)
    calculation.save()

    logger.info('Performing requested calculation')
    # Download selected layer objects
    logger.info('- Downloading hazard layer %s from %s' % (hazard_layer,
                                                           hazard_server))
    H = download(hazard_server, hazard_layer, bbox)
    logger.info('- Downloading exposure layer %s from %s' % (exposure_layer,
                                                             exposure_server))
    E = download(exposure_server, exposure_layer, bbox)

    # Calculate result using specified impact function
    logger.info('- Calculating impact using %s' % impact_function)

    impact_filename = calculate_impact(layers=[H, E],
                                       impact_function=impact_function)

    # Upload result to internal GeoServer
    logger.info('- Uploading impact layer %s' % impact_filename)
    result = save_output(impact_filename,
                         title='output_%s' % start.isoformat(),
                         user=theuser)
    logger.info('- Result available at %s.' % result.get_absolute_url())

    calculation.layer = result.get_absolute_url()
    calculation.success = True
    calculation.save()

    output = calculation.__dict__

    # json.dumps does not like datetime objects,
    # let's make it a json string ourselves
    output['run_date'] = 'new Date("%s")' % calculation.run_date

    # FIXME:This should not be needed in an ideal world
    ows_server_url = settings.GEOSERVER_BASE_URL + 'ows',
    output['ows_server_url'] = ows_server_url

    # json.dumps does not like django users
    output['user'] = calculation.user.username

    # Delete _state and _user_cache item from the dict,
    # they were created automatically by Django
    del output['_user_cache']
    del output['_state']
    jsondata = json.dumps(output)
    return HttpResponse(jsondata, mimetype='application/json')
Exemple #12
0
    def test_raster_scaling(self):
        """Raster layers can be scaled when resampled

        This is a test for ticket #168

        Native test .asc data has

        ncols         5525
        nrows         2050
        cellsize      0.0083333333333333

        Scaling is necessary for raster data that represents density
        such as population per km^2
        """

        for test_filename in [
                'Population_Jakarta_geographic.asc', 'Population_2010.asc'
        ]:

            raster_filename = ('%s/%s' % (TESTDATA, test_filename))

            # Get reference values
            R = read_layer(raster_filename)
            R_min_ref, R_max_ref = R.get_extrema()
            native_resolution = R.get_resolution()

            # Upload to internal geonode
            raster_layer = save_to_geonode(raster_filename, user=self.user)
            raster_name = '%s:%s' % (raster_layer.workspace, raster_layer.name)

            # Test for a range of resolutions
            for res in [
                    0.02,
                    0.01,
                    0.005,
                    0.002,
                    0.001,
                    0.0005,  # Coarser
                    0.0002
            ]:  # Finer

                # To save time don't do finest resolution for the
                # large population set
                if test_filename.startswith('Population_2010') and res < 0.005:
                    break

                bbox = get_bounding_box_string(raster_filename)

                R = download(INTERNAL_SERVER_URL,
                             raster_name,
                             bbox,
                             resolution=res)
                A_native = R.get_data(scaling=False)
                A_scaled = R.get_data(scaling=True)

                sigma = (R.get_resolution()[0] / native_resolution[0])**2

                # Compare extrema
                expected_scaled_max = sigma * numpy.nanmax(A_native)
                msg = ('Resampled raster was not rescaled correctly: '
                       'max(A_scaled) was %f but expected %f' %
                       (numpy.nanmax(A_scaled), expected_scaled_max))

                assert numpy.allclose(expected_scaled_max,
                                      numpy.nanmax(A_scaled),
                                      rtol=1.0e-8,
                                      atol=1.0e-8), msg

                expected_scaled_min = sigma * numpy.nanmin(A_native)
                msg = ('Resampled raster was not rescaled correctly: '
                       'min(A_scaled) was %f but expected %f' %
                       (numpy.nanmin(A_scaled), expected_scaled_min))
                assert numpy.allclose(expected_scaled_min,
                                      numpy.nanmin(A_scaled),
                                      rtol=1.0e-8,
                                      atol=1.0e-12), msg

                # Compare elementwise
                msg = 'Resampled raster was not rescaled correctly'
                assert nanallclose(A_native * sigma,
                                   A_scaled,
                                   rtol=1.0e-8,
                                   atol=1.0e-8), msg

                # Check that it also works with manual scaling
                A_manual = R.get_data(scaling=sigma)
                msg = 'Resampled raster was not rescaled correctly'
                assert nanallclose(A_manual,
                                   A_scaled,
                                   rtol=1.0e-8,
                                   atol=1.0e-8), msg

                # Check that an exception is raised for bad arguments
                try:
                    R.get_data(scaling='bad')
                except:
                    pass
                else:
                    msg = 'String argument should have raised exception'
                    raise Exception(msg)

                try:
                    R.get_data(scaling='(1, 3)')
                except:
                    pass
                else:
                    msg = 'Tuple argument should have raised exception'
                    raise Exception(msg)

                # Check None option without existence of density keyword
                A_none = R.get_data(scaling=None)
                msg = 'Data should not have changed'
                assert nanallclose(A_native,
                                   A_none,
                                   rtol=1.0e-12,
                                   atol=1.0e-12), msg

                # Try with None and density keyword
                R.keywords['density'] = 'true'
                A_none = R.get_data(scaling=None)
                msg = 'Resampled raster was not rescaled correctly'
                assert nanallclose(A_scaled,
                                   A_none,
                                   rtol=1.0e-12,
                                   atol=1.0e-12), msg

                R.keywords['density'] = 'Yes'
                A_none = R.get_data(scaling=None)
                msg = 'Resampled raster was not rescaled correctly'
                assert nanallclose(A_scaled,
                                   A_none,
                                   rtol=1.0e-12,
                                   atol=1.0e-12), msg

                R.keywords['density'] = 'False'
                A_none = R.get_data(scaling=None)
                msg = 'Data should not have changed'
                assert nanallclose(A_native,
                                   A_none,
                                   rtol=1.0e-12,
                                   atol=1.0e-12), msg

                R.keywords['density'] = 'no'
                A_none = R.get_data(scaling=None)
                msg = 'Data should not have changed'
                assert nanallclose(A_native,
                                   A_none,
                                   rtol=1.0e-12,
                                   atol=1.0e-12), msg
Exemple #13
0
    def test_specified_raster_resolution(self):
        """Raster layers can be downloaded with specific resolution

        This is another test for ticket #103

        Native test data:

        maumere....asc
        ncols 931
        nrows 463
        cellsize 0.00018

        Population_Jakarta
        ncols         638
        nrows         649
        cellsize      0.00045228819716044

        Population_2010
        ncols         5525
        nrows         2050
        cellsize      0.0083333333333333


        Here we download it at a range of fixed resolutions that
        are both coarser and finer, and check that the dimensions
        of the downloaded matrix are as expected.

        We also check that the extrema of the subsampled matrix are sane
        """

        for test_filename in [
                'maumere_aos_depth_20m_land_wgs84.asc',
                'Population_Jakarta_geographic.asc', 'Population_2010.asc'
        ]:

            hazard_filename = ('%s/%s' % (TESTDATA, test_filename))

            # Get reference values
            H = read_layer(hazard_filename)
            depth_min_ref, depth_max_ref = H.get_extrema()
            native_resolution = H.get_resolution()

            # Upload to internal geonode
            hazard_layer = save_to_geonode(hazard_filename, user=self.user)
            hazard_name = '%s:%s' % (hazard_layer.workspace, hazard_layer.name)

            # Test for a range of resolutions
            for res in [
                    0.02,
                    0.01,
                    0.005,
                    0.002,
                    0.001,
                    0.0005,  # Coarser
                    0.0002,
                    0.0001,
                    0.00006,
                    0.00003
            ]:  # Finer

                # To save time don't do finest resolution for the
                # two population sets
                if test_filename.startswith('Population') and res < 0.00006:
                    break

                # Set bounding box
                bbox = get_bounding_box_string(hazard_filename)
                compare_extrema = True
                if test_filename == 'Population_2010.asc':
                    # Make bbox small for finer resolutions to
                    # save time and to test that as well.
                    # However, extrema obviously won't match those
                    # of the full dataset. Once we can clip
                    # datasets, we can remove this restriction.
                    if res < 0.005:
                        bbox = '106.685974,-6.373421,106.974534,-6.079886'
                        compare_extrema = False
                bb = bboxstring2list(bbox)

                # Download data at specified resolution
                H = download(INTERNAL_SERVER_URL,
                             hazard_name,
                             bbox,
                             resolution=res)
                A = H.get_data()

                # Verify that data has the requested bobx and resolution
                actual_bbox = H.get_bounding_box()
                msg = ('Bounding box for %s was not as requested. I got %s '
                       'but '
                       'expected %s' % (hazard_name, actual_bbox, bb))
                assert numpy.allclose(actual_bbox, bb, rtol=1.0e-6)

                # FIXME (Ole): How do we sensibly resolve the issue with
                #              resx, resy vs one resolution (issue #173)
                actual_resolution = H.get_resolution()[0]

                # FIXME (Ole): Resolution is often far from the requested
                #              see issue #102
                #              Here we have to accept up to 5%
                tolerance102 = 5.0e-2
                msg = ('Resolution of %s was not as requested. I got %s but '
                       'expected %s' % (hazard_name, actual_resolution, res))
                assert numpy.allclose(actual_resolution,
                                      res,
                                      rtol=tolerance102), msg

                # Determine expected shape from bbox (W, S, E, N)
                ref_rows = int(round((bb[3] - bb[1]) / res))
                ref_cols = int(round((bb[2] - bb[0]) / res))

                # Compare shapes (generally, this may differ by 1)
                msg = ('Shape of downloaded raster was [%i, %i]. '
                       'Expected [%i, %i].' %
                       (A.shape[0], A.shape[1], ref_rows, ref_cols))
                assert (ref_rows == A.shape[0] and ref_cols == A.shape[1]), msg

                # Assess that the range of the interpolated data is sane
                if not compare_extrema:
                    continue

                # For these test sets we get exact match of the minimum
                msg = (
                    'Minimum of %s resampled at resolution %f '
                    'was %f. Expected %f.' %
                    (hazard_layer.name, res, numpy.nanmin(A), depth_min_ref))
                assert numpy.allclose(depth_min_ref,
                                      numpy.nanmin(A),
                                      rtol=0.0,
                                      atol=0.0), msg

                # At the maximum it depends on the subsampling
                msg = (
                    'Maximum of %s resampled at resolution %f '
                    'was %f. Expected %f.' %
                    (hazard_layer.name, res, numpy.nanmax(A), depth_max_ref))
                if res < native_resolution[0]:
                    # When subsampling to finer resolutions we expect a
                    # close match
                    assert numpy.allclose(depth_max_ref,
                                          numpy.nanmax(A),
                                          rtol=1.0e-10,
                                          atol=1.0e-8), msg
                elif res < native_resolution[0] * 10:
                    # When upsampling to coarser resolutions we expect
                    # ballpark match (~20%)
                    assert numpy.allclose(depth_max_ref,
                                          numpy.nanmax(A),
                                          rtol=0.17,
                                          atol=0.0), msg
                else:
                    # Upsampling to very coarse resolutions, just want sanity
                    assert 0 < numpy.nanmax(A) <= depth_max_ref
Exemple #14
0
    def test_keywords_download(self):
        """Keywords are downloaded from GeoServer along with layer data
        """

        # Upload test data
        filenames = [
            'Lembang_Earthquake_Scenario.asc', 'Padang_WGS84.shp',
            'maumere_aos_depth_20m_land_wgs84.asc'
        ]
        layers = []
        paths = []
        for filename in filenames:
            basename, ext = os.path.splitext(filename)

            path = os.path.join(TESTDATA, filename)

            # Upload to GeoNode
            layer = save_to_geonode(path, user=self.user, overwrite=True)

            # Record layer and file
            layers.append(layer)
            paths.append(path)

        # Check integrity
        for i, layer in enumerate(layers):

            # Get reference keyword dictionary from file
            L = read_layer(paths[i])
            ref_keywords = L.get_keywords()

            # Get keywords metadata from GeoServer
            layer_name = '%s:%s' % (layer.workspace, layer.name)
            metadata = get_metadata(INTERNAL_SERVER_URL, layer_name)
            assert 'keywords' in metadata
            geo_keywords = metadata['keywords']
            msg = ('Uploaded keywords were not as expected: I got %s '
                   'but expected %s' % (geo_keywords, ref_keywords))
            for kw in ref_keywords:
                # Check that all keywords were uploaded
                # It is OK for new automatic keywords to have appeared
                #  (e.g. resolution) - see issue #171
                assert kw in geo_keywords, msg
                assert ref_keywords[kw] == geo_keywords[kw], msg

            # Download data
            bbox = get_bounding_box_string(paths[i])
            H = download(INTERNAL_SERVER_URL, layer_name, bbox)

            dwn_keywords = H.get_keywords()
            msg = ('Downloaded keywords were not as expected: I got %s '
                   'but expected %s' % (dwn_keywords, geo_keywords))
            assert geo_keywords == dwn_keywords, msg

            # Check that the layer and its .keyword file is there.
            msg = 'Downloaded layer %s was not found' % H.filename
            assert os.path.isfile(H.filename), msg

            kw_filename = os.path.splitext(H.filename)[0] + '.keywords'
            msg = 'Downloaded keywords file %s was not found' % kw_filename
            assert os.path.isfile(kw_filename), msg

            # Check that keywords are OK when reading downloaded file
            L = read_layer(H.filename)
            read_keywords = L.get_keywords()
            msg = ('Keywords in downloaded file %s were not as expected: '
                   'I got %s but expected %s' %
                   (kw_filename, read_keywords, geo_keywords))
            assert read_keywords == geo_keywords, msg
Exemple #15
0
    def test_earthquake_exposure_plugin(self):
        """Population exposure to individual MMI levels can be computed
        """

        # Upload exposure data for this test
        # FIXME (Ole): While this dataset is ok for testing,
        # note that is has been resampled without scaling
        # so numbers are about 25 times too large.
        # Consider replacing test populations dataset for good measures,
        # just in case any one accidentally started using this dataset
        # for real.

        name = 'Population_2010'
        exposure_filename = '%s/%s.asc' % (TESTDATA, name)
        exposure_layer = save_to_geonode(exposure_filename,
                                         user=self.user, overwrite=True)
        exposure_name = '%s:%s' % (exposure_layer.workspace,
                                   exposure_layer.name)

        # Check metadata
        assert_bounding_box_matches(exposure_layer, exposure_filename)
        exp_bbox_string = get_bounding_box_string(exposure_filename)
        check_layer(exposure_layer, full=True)

        # Upload hazard data
        filename = 'Lembang_Earthquake_Scenario.asc'
        hazard_filename = '%s/%s' % (TESTDATA, filename)
        hazard_layer = save_to_geonode(hazard_filename,
                                       user=self.user, overwrite=True)
        hazard_name = '%s:%s' % (hazard_layer.workspace,
                                 hazard_layer.name)

        # Check metadata
        assert_bounding_box_matches(hazard_layer, hazard_filename)
        haz_bbox_string = get_bounding_box_string(hazard_filename)
        check_layer(hazard_layer, full=True)

        # Run calculation
        c = Client()
        rv = c.post('/impact/api/calculate/', data=dict(
                hazard_server=INTERNAL_SERVER_URL,
                hazard=hazard_name,
                exposure_server=INTERNAL_SERVER_URL,
                exposure=exposure_name,
                bbox=haz_bbox_string,
                impact_function='EarthquakePopulationExposureFunction',
                keywords='test,population,exposure,usgs'))

        self.assertEqual(rv.status_code, 200)
        self.assertEqual(rv['Content-Type'], 'application/json')
        data = json.loads(rv.content)
        if 'errors' in data:
            errors = data['errors']
            if errors is not None:
                msg = ('The server returned the error message: %s'
                       % str(errors))
                raise Exception(msg)

        assert 'success' in data
        assert 'hazard_layer' in data
        assert 'exposure_layer' in data
        assert 'run_duration' in data
        assert 'run_date' in data
        assert 'layer' in data

        assert data['success']

        # Download result and check
        layer_name = data['layer'].split('/')[-1]

        result_layer = download(INTERNAL_SERVER_URL,
                                layer_name,
                                get_bounding_box_string(hazard_filename))
        assert os.path.exists(result_layer.filename)

        # Check calculated values
        keywords = result_layer.get_keywords()

        assert 'mmi-classes' in keywords
        assert 'affected-population' in keywords

        mmi_classes = [int(x) for x in keywords['mmi-classes'].split('_')]
        count = [float(x) for x in keywords['affected-population'].split('_')]

        # Brute force count for each population level
        population = download(INTERNAL_SERVER_URL,
                              exposure_name,
                              get_bounding_box_string(hazard_filename))
        intensity = download(INTERNAL_SERVER_URL,
                             hazard_name,
                             get_bounding_box_string(hazard_filename))

        # Extract data
        H = intensity.get_data(nan=0)
        P = population.get_data(nan=0)

        brutecount = {}
        for mmi in mmi_classes:
            brutecount[mmi] = 0

        for i in range(P.shape[0]):
            for j in range(P.shape[1]):
                mmi = H[i, j]
                if not numpy.isnan(mmi):
                    mmi_class = int(round(mmi))

                    pop = P[i, j]
                    if not numpy.isnan(pop):
                        brutecount[mmi_class] += pop

        for i, mmi in enumerate(mmi_classes):
            assert numpy.allclose(count[i], brutecount[mmi], rtol=1.0e-6)
Exemple #16
0
    def test_linked_datasets(self):
        """Linked datesets can be pulled in e.g. to include gender break down
        """

        # Upload exposure data for this test. This will automatically
        # pull in female_pct_yogya.asc through its "associates" keyword
        name = 'population_yogya'
        exposure_filename = '%s/%s.asc' % (TESTDATA, name)
        exposure_layer = save_to_geonode(exposure_filename,
                                         user=self.user, overwrite=True)
        exposure_name = '%s:%s' % (exposure_layer.workspace,
                                   exposure_layer.name)

        # Check metadata
        assert_bounding_box_matches(exposure_layer, exposure_filename)
        exp_bbox_string = get_bounding_box_string(exposure_filename)
        check_layer(exposure_layer, full=True)

        # Upload hazard data
        filename = 'eq_yogya_2006.asc'
        hazard_filename = '%s/%s' % (TESTDATA, filename)
        hazard_layer = save_to_geonode(hazard_filename,
                                       user=self.user, overwrite=True)
        hazard_name = '%s:%s' % (hazard_layer.workspace,
                                 hazard_layer.name)

        # Check metadata
        assert_bounding_box_matches(hazard_layer, hazard_filename)
        haz_bbox_string = get_bounding_box_string(hazard_filename)
        check_layer(hazard_layer, full=True)

        # Run calculation
        c = Client()
        rv = c.post('/impact/api/calculate/', data=dict(
                hazard_server=INTERNAL_SERVER_URL,
                hazard=hazard_name,
                exposure_server=INTERNAL_SERVER_URL,
                exposure=exposure_name,
                bbox=haz_bbox_string,
                impact_function='EarthquakeFatalityFunction',
                keywords='test,fatalities,population,usgs'))

        self.assertEqual(rv.status_code, 200)
        self.assertEqual(rv['Content-Type'], 'application/json')
        data = json.loads(rv.content)
        if 'errors' in data:
            errors = data['errors']
            if errors is not None:
                msg = ('The server returned the error message: %s'
                       % str(errors))
                raise Exception(msg)

        assert 'success' in data
        assert 'hazard_layer' in data
        assert 'exposure_layer' in data
        assert 'run_duration' in data
        assert 'run_date' in data
        assert 'layer' in data

        assert data['success']

        # Download result and check
        layer_name = data['layer'].split('/')[-1]

        result_layer = download(INTERNAL_SERVER_URL,
                                layer_name,
                                get_bounding_box_string(hazard_filename))
        assert os.path.exists(result_layer.filename)

        # Check calculated values
        keywords = result_layer.get_keywords()

        assert 'caption' in keywords
Exemple #17
0
    def Xtest_interpolation_example(self):
        """Interpolation is done correctly with data going through geonode

        This data (Maumere scenaria) showed some very wrong results
        when first attempted in August 2011 - hence this test
        """

        # Name file names for hazard level, exposure and expected fatalities
        hazard_filename = ('%s/maumere_aos_depth_20m_land_wgs84.asc'
                           % TESTDATA)
        exposure_filename = ('%s/maumere_pop_prj.shp' % TESTDATA)

        # Upload to internal geonode
        hazard_layer = save_to_geonode(hazard_filename, user=self.user)
        hazard_name = '%s:%s' % (hazard_layer.workspace, hazard_layer.name)

        exposure_layer = save_to_geonode(exposure_filename, user=self.user)
        exposure_name = '%s:%s' % (exposure_layer.workspace,
                                   exposure_layer.name)

        # Download data again
        bbox = get_bounding_box_string(hazard_filename)  # The biggest
        H = download(INTERNAL_SERVER_URL, hazard_name, bbox)
        E = download(INTERNAL_SERVER_URL, exposure_name, bbox)

        A = H.get_data()
        depth_min, depth_max = H.get_extrema()

        # Compare extrema to values read off QGIS for this layer
        print 'E', depth_min, depth_max
        assert numpy.allclose([depth_min, depth_max], [0.0, 16.68],
                              rtol=1.0e-6, atol=1.0e-10)

        coordinates = E.get_geometry()
        attributes = E.get_data()

        # Interpolate
        I = H.interpolate(E, name='depth')
        Icoordinates = I.get_geometry()
        Iattributes = I.get_data()
        assert numpy.allclose(Icoordinates, coordinates)

        N = len(Icoordinates)
        assert N == 891

        # Verify interpolated values with test result
        for i in range(N):

            interpolated_depth = Iattributes[i]['depth']
            pointid = attributes[i]['POINTID']

            if pointid == 263:

                # Check that location is correct
                assert numpy.allclose(coordinates[i],
                                      [122.20367299, -8.61300358])

                # This is known to be outside inundation area so should
                # near zero
                assert numpy.allclose(interpolated_depth, 0.0,
                                      rtol=1.0e-12, atol=1.0e-12)

            if pointid == 148:
                # Check that location is correct
                assert numpy.allclose(coordinates[i],
                                      [122.2045912, -8.608483265])

                # This is in an inundated area with a surrounding depths of
                # 4.531, 3.911
                # 2.675, 2.583
                assert interpolated_depth < 4.531
                assert interpolated_depth > 2.583
                assert numpy.allclose(interpolated_depth, 3.553,
                                      rtol=1.0e-5, atol=1.0e-5)

            # Check that interpolated points are within range
            msg = ('Interpolated depth %f at point %i was outside extrema: '
                   '[%f, %f]. ' % (interpolated_depth, i,
                                   depth_min, depth_max))

            if not numpy.isnan(interpolated_depth):
                tol = 1.0e-6
Exemple #18
0
    def test_the_earthquake_fatality_estimation_allen(self):
        """Fatality computation computed correctly with GeoServer Data
        """

        # Simulate bounding box from application
        viewport_bbox_string = '104.3,-8.2,110.04,-5.17'

        # Upload exposure data for this test
        name = 'Population_2010'
        exposure_filename = '%s/%s.asc' % (TESTDATA, name)
        exposure_layer = save_to_geonode(exposure_filename,
                                         user=self.user, overwrite=True)

        workspace = exposure_layer.workspace
        msg = 'Expected workspace to be "geonode". Got %s' % workspace
        assert workspace == 'geonode'

        layer_name = exposure_layer.name
        msg = 'Expected layer name to be "%s". Got %s' % (name, layer_name)
        assert layer_name == name.lower(), msg

        exposure_name = '%s:%s' % (workspace, layer_name)

        # Check metadata
        assert_bounding_box_matches(exposure_layer, exposure_filename)
        exp_bbox_string = get_bounding_box_string(exposure_filename)
        check_layer(exposure_layer, full=True)

        # Now we know that exposure layer is good, lets upload some
        # hazard layers and do the calculations
        filename = 'Lembang_Earthquake_Scenario.asc'

        # Save
        hazard_filename = '%s/%s' % (TESTDATA, filename)
        hazard_layer = save_to_geonode(hazard_filename,
                                       user=self.user, overwrite=True)
        hazard_name = '%s:%s' % (hazard_layer.workspace,
                                 hazard_layer.name)

        # Check metadata
        assert_bounding_box_matches(hazard_layer, hazard_filename)
        haz_bbox_string = get_bounding_box_string(hazard_filename)
        check_layer(hazard_layer, full=True)

        # Run calculation
        c = Client()
        rv = c.post('/impact/api/calculate/', data=dict(
                hazard_server=INTERNAL_SERVER_URL,
                hazard=hazard_name,
                exposure_server=INTERNAL_SERVER_URL,
                exposure=exposure_name,
                #bbox=viewport_bbox_string,
                bbox=exp_bbox_string,  # This one reproduced the
                                       # crash for lembang
                impact_function='EarthquakeFatalityFunction',
                keywords='test,shakemap,usgs'))

        self.assertEqual(rv.status_code, 200)
        self.assertEqual(rv['Content-Type'], 'application/json')
        data = json.loads(rv.content)
        if 'errors' in data:
            errors = data['errors']
            if errors is not None:
                msg = ('The server returned the error message: %s'
                       % str(errors))
                raise Exception(msg)

        assert 'success' in data
        assert 'hazard_layer' in data
        assert 'exposure_layer' in data
        assert 'run_duration' in data
        assert 'run_date' in data
        assert 'layer' in data

        assert data['success']

        # Download result and check
        layer_name = data['layer'].split('/')[-1]

        result_layer = download(INTERNAL_SERVER_URL,
                                layer_name,
                                get_bounding_box_string(hazard_filename))
        assert os.path.exists(result_layer.filename)
Exemple #19
0
    def test_jakarta_flood_study(self):
        """HKV Jakarta flood study calculated correctly using the API
        """

        # FIXME (Ole): Redo with population as shapefile later

        # Expected values from HKV
        expected_values = [2485442, 1537920]

        # Name files for hazard level, exposure and expected fatalities
        population = 'Population_Jakarta_geographic'
        plugin_name = 'FloodImpactFunction'

        # Upload exposure data for this test
        exposure_filename = '%s/%s.asc' % (TESTDATA, population)
        exposure_layer = save_to_geonode(exposure_filename,
                                         user=self.user, overwrite=True)

        workspace = exposure_layer.workspace
        msg = 'Expected workspace to be "geonode". Got %s' % workspace
        assert workspace == 'geonode'

        layer_name = exposure_layer.name
        msg = 'Expected layer name to be "%s". Got %s' % (population,
                                                          layer_name)
        assert layer_name.lower() == population.lower(), msg

        exposure_name = '%s:%s' % (workspace, layer_name)

        # Check metadata
        assert_bounding_box_matches(exposure_layer, exposure_filename)
        exp_bbox_string = get_bounding_box_string(exposure_filename)
        check_layer(exposure_layer, full=True)

        # Now we know that exposure layer is good, lets upload some
        # hazard layers and do the calculations

        i = 0
        for filename in ['Flood_Current_Depth_Jakarta_geographic.asc',
                         'Flood_Design_Depth_Jakarta_geographic.asc']:

            hazard_filename = os.path.join(TESTDATA, filename)
            exposure_filename = os.path.join(TESTDATA, population)

            # Save
            hazard_filename = '%s/%s' % (TESTDATA, filename)
            hazard_layer = save_to_geonode(hazard_filename,
                                           user=self.user, overwrite=True)
            hazard_name = '%s:%s' % (hazard_layer.workspace,
                                     hazard_layer.name)

            # Check metadata
            assert_bounding_box_matches(hazard_layer, hazard_filename)
            haz_bbox_string = get_bounding_box_string(hazard_filename)
            check_layer(hazard_layer, full=True)

            # Run calculation
            c = Client()
            rv = c.post('/impact/api/calculate/', data=dict(
                    hazard_server=INTERNAL_SERVER_URL,
                    hazard=hazard_name,
                    exposure_server=INTERNAL_SERVER_URL,
                    exposure=exposure_name,
                    bbox=exp_bbox_string,
                    impact_function=plugin_name,
                    keywords='test,flood,HKV'))

            self.assertEqual(rv.status_code, 200)
            self.assertEqual(rv['Content-Type'], 'application/json')
            data = json.loads(rv.content)
            if 'errors' in data:
                errors = data['errors']
                if errors is not None:
                    raise Exception(errors)

            assert 'hazard_layer' in data
            assert 'exposure_layer' in data
            assert 'run_duration' in data
            assert 'run_date' in data
            assert 'layer' in data

            # Do calculation manually and check result
            hazard_raster = read_layer(hazard_filename)
            H = hazard_raster.get_data(nan=0)

            exposure_raster = read_layer(exposure_filename + '.asc')
            P = exposure_raster.get_data(nan=0)

            # Calculate impact manually
            pixel_area = 2500
            I = numpy.where(H > 0.1, P, 0) / 100000.0 * pixel_area

            # Verify correctness against results from HKV
            res = sum(I.flat)
            ref = expected_values[i]
            #print filename, 'Result=%f' % res, ' Expected=%f' % ref
            #print 'Pct relative error=%f' % (abs(res-ref)*100./ref)

            msg = 'Got result %f but expected %f' % (res, ref)
            assert numpy.allclose(res, ref, rtol=1.0e-2), msg

            # Verify correctness of result
            # Download result and check
            layer_name = data['layer'].split('/')[-1]

            result_layer = download(INTERNAL_SERVER_URL,
                                    layer_name,
                                    get_bounding_box_string(hazard_filename))
            assert os.path.exists(result_layer.filename)

            calculated_raster = read_layer(result_layer.filename)
            C = calculated_raster.get_data(nan=0)

            # FIXME (Ole): Bring this back
            # Check caption
            #caption = calculated_raster.get_caption()
            #print
            #print caption
            #expct = 'people'
            #msg = ('Caption %s did not contain expected '
            #       'keyword %s' % (caption, expct))
            #assert expct in caption, msg

            # Compare shape and extrema
            msg = ('Shape of calculated raster differs from reference raster: '
                   'C=%s, I=%s' % (C.shape, I.shape))
            assert numpy.allclose(C.shape, I.shape,
                                  rtol=1e-12, atol=1e-12), msg

            msg = ('Minimum of calculated raster differs from reference '
                   'raster: '
                   'C=%s, I=%s' % (numpy.nanmin(C), numpy.nanmin(I)))
            assert numpy.allclose(numpy.nanmin(C), numpy.nanmin(I),
                                  rtol=1e-6, atol=1e-12), msg
            msg = ('Maximum of calculated raster differs from reference '
                   'raster: '
                   'C=%s, I=%s' % (numpy.nanmax(C), numpy.nanmax(I)))
            assert numpy.allclose(numpy.nanmax(C), numpy.nanmax(I),
                                  rtol=1e-6, atol=1e-12), msg

            # Compare every single value numerically (a bit loose -
            # probably due to single precision conversions when
            # data flows through geonode)
            #
            # FIXME: Not working - but since this test is about
            # issue #162 we'll leave it for now. TODO with NAN
            # Manually verified that the two expected values are correct,
            # though.
            #msg = 'Array values of written raster array were not as expected'
            #print C
            #print I
            #print numpy.amax(numpy.abs(C-I))
            #assert numpy.allclose(C, I, rtol=1e-2, atol=1e-5), msg

            # Check that extrema are in range
            xmin, xmax = calculated_raster.get_extrema()

            assert numpy.alltrue(C[-numpy.isnan(C)] >= xmin), msg
            assert numpy.alltrue(C[-numpy.isnan(C)] <= xmax)
            assert numpy.alltrue(C[-numpy.isnan(C)] >= 0)

            i += 1
Exemple #20
0
def calculate(request, save_output=save_to_geonode):
    start = datetime.datetime.now()

    if request.method == 'GET':
        # FIXME: Add a basic form here to be able to generate the POST request.
        return HttpResponse('This should be accessed by robots, not humans.'
                            'In other words using HTTP POST instead of GET.')
    elif request.method == 'POST':
        data = request.POST
        impact_function_name = data['impact_function']
        hazard_server = data['hazard_server']
        hazard_layer = data['hazard']
        exposure_server = data['exposure_server']
        exposure_layer = data['exposure']
        bbox = data['bbox']
        keywords = data['keywords']

    if request.user.is_anonymous():
        theuser = get_valid_user()
    else:
        theuser = request.user

    # Create entry in database
    calculation = Calculation(user=theuser,
                              run_date=start,
                              hazard_server=hazard_server,
                              hazard_layer=hazard_layer,
                              exposure_server=exposure_server,
                              exposure_layer=exposure_layer,
                              impact_function=impact_function_name,
                              success=False)

    try:

        # Input checks
        msg = 'This cannot happen :-)'
        assert isinstance(bbox, basestring), msg

        check_bbox_string(bbox)

        # Find the intersection of bounding boxes for viewport,
        # hazard and exposure.
        vpt_bbox = bboxstring2list(bbox)
        haz_bbox = get_metadata(hazard_server,
                                hazard_layer)['bounding_box']
        exp_bbox = get_metadata(exposure_server,
                                exposure_layer)['bounding_box']

        # Impose minimum bounding box size (as per issue #101).
        # FIXME (Ole): This will need to be revisited in conjunction with
        # raster resolutions at some point.
        min_res = 0.00833334
        eps = 1.0e-1
        vpt_bbox = minimal_bounding_box(vpt_bbox, min_res, eps=eps)
        haz_bbox = minimal_bounding_box(haz_bbox, min_res, eps=eps)
        exp_bbox = minimal_bounding_box(exp_bbox, min_res, eps=eps)

        # New bounding box for data common to hazard, exposure and viewport
        # Download only data within this intersection
        intersection = bbox_intersection(vpt_bbox, haz_bbox, exp_bbox)
        if intersection is None:
            # Bounding boxes did not overlap
            msg = ('Bounding boxes of hazard data, exposure data and '
                   'viewport did not overlap, so no computation was '
                   'done. Please try again.')
            logger.info(msg)
            raise Exception(msg)

        bbox = bboxlist2string(intersection)

        plugin_list = get_plugins(impact_function_name)
        _, impact_function = plugin_list[0].items()[0]
        impact_function_source = inspect.getsource(impact_function)

        calculation.impact_function_source = impact_function_source
        calculation.bbox = bbox

        calculation.save()

        msg = 'Performing requested calculation'
        logger.info(msg)

        # Download selected layer objects
        msg = ('- Downloading hazard layer %s from %s' % (hazard_layer,
                                                      hazard_server))
        logger.info(msg)

        H = download(hazard_server, hazard_layer, bbox)

        msg = ('- Downloading exposure layer %s from %s' % (exposure_layer,
                                                        exposure_server))
        logger.info(msg)
        E = download(exposure_server, exposure_layer, bbox)

        # Calculate result using specified impact function
        msg = ('- Calculating impact using %s' % impact_function)
        logger.info(msg)

        impact_filename = calculate_impact(layers=[H, E],
                                           impact_fcn=impact_function)

        # Upload result to internal GeoServer
        msg = ('- Uploading impact layer %s' % impact_filename)
        logger.info(msg)
        result = save_output(impact_filename,
                         title='output_%s' % start.isoformat(),
                         user=theuser)
    except Exception, e:
        #FIXME: Reimplement error saving for calculation
        logger.error(e)
        errors = e.__str__()
        trace = exception_format(e)
        calculation.errors = errors
        calculation.stacktrace = trace
        calculation.save()
        jsondata = json.dumps({'errors': errors, 'stacktrace': trace})
        return HttpResponse(jsondata, mimetype='application/json')
Exemple #21
0
def calculate(request, save_output=save_to_geonode):
    start = datetime.datetime.now()

    if request.method == 'GET':
        # FIXME: Add a basic form here to be able to generate the POST request.
        return HttpResponse('This should be accessed by robots, not humans.'
                            'In other words using HTTP POST instead of GET.')
    elif request.method == 'POST':
        data = request.POST
        impact_function_name = data['impact_function']
        hazard_server = data['hazard_server']
        hazard_layer = data['hazard']
        exposure_server = data['exposure_server']
        exposure_layer = data['exposure']
        requested_bbox = data['bbox']
        keywords = data['keywords']

    if request.user.is_anonymous():
        theuser = get_valid_user()
    else:
        theuser = request.user

    # Create entry in database
    calculation = Calculation(user=theuser,
                              run_date=start,
                              hazard_server=hazard_server,
                              hazard_layer=hazard_layer,
                              exposure_server=exposure_server,
                              exposure_layer=exposure_layer,
                              impact_function=impact_function_name,
                              success=False)

    # Wrap main computation loop in try except to catch and present
    # messages and stack traces in the application
    try:
        # Get metadata
        haz_metadata = get_metadata(hazard_server, hazard_layer)
        exp_metadata = get_metadata(exposure_server, exposure_layer)

        # Determine common resolution in case of raster layers
        raster_resolution = get_common_resolution(haz_metadata, exp_metadata)

        # Get reconciled bounding boxes
        haz_bbox, exp_bbox, imp_bbox = get_bounding_boxes(haz_metadata,
                                                          exp_metadata,
                                                          requested_bbox)

        # Record layers to download
        download_layers = [(hazard_server, hazard_layer, haz_bbox),
                           (exposure_server, exposure_layer, exp_bbox)]

        # Add linked layers if any FIXME: STILL TODO!

        # Get selected impact function
        impact_function = get_plugin(impact_function_name)
        impact_function_source = inspect.getsource(impact_function)

        # Record information calculation object and save it
        calculation.impact_function_source = impact_function_source
        calculation.bbox = bboxlist2string(imp_bbox)
        calculation.save()

        # Start computation
        msg = 'Performing requested calculation'
        logger.info(msg)

        # Download selected layer objects
        layers = []
        for server, layer_name, bbox in download_layers:
            msg = ('- Downloading layer %s from %s'
                   % (layer_name, server))
            logger.info(msg)
            L = download(server, layer_name, bbox, raster_resolution)
            layers.append(L)

        # Calculate result using specified impact function
        msg = ('- Calculating impact using %s' % impact_function)
        logger.info(msg)
        impact_filename = calculate_impact(layers=layers,
                                           impact_fcn=impact_function)

        # Upload result to internal GeoServer
        msg = ('- Uploading impact layer %s' % impact_filename)
        logger.info(msg)
        result = save_output(impact_filename,
                             title='output_%s' % start.isoformat(),
                             user=theuser)
    except Exception, e:
        # FIXME: Reimplement error saving for calculation.
        # FIXME (Ole): Why should we reimplement?
        # This is dangerous. Try to raise an exception
        # e.g. in get_metadata_from_layer. Things will silently fail.
        # See issue #170

        logger.error(e)
        errors = e.__str__()
        trace = exception_format(e)
        calculation.errors = errors
        calculation.stacktrace = trace
        calculation.save()
        jsondata = json.dumps({'errors': errors, 'stacktrace': trace})
        return HttpResponse(jsondata, mimetype='application/json')