def intf_LMUL(E): """List multiplication operator where lists are the focus. Compare to `*` where items are the focus. All SYMs are resolved to their referent. The input requires only that v1 or v2 or both must resolve to a VAL. All other combinations are valid. A negative VAL as the multiplier will reverse the order of mulitplied lists. L V :* -> replication of list items in list, commutative T V :* -> put text item in list with copies, commutative V V :* -> put v2 in list with v1 copies, not commutative Examples: [1 2 3] 2 :* -> [1 2 3 1 2 3] 2 [1 2 3] :* -> [1 2 3 1 2 3] ''abc'' 2 :* -> [''abc'' ''abc''] 4 3 :* -> [4 4 4] 3 4 :* -> [3 3 3 3] [0 1] -3 :* -> [1 0 1 0 1 0] """ if not (inc.VAL(E, 1) or inc.VAL(E, 2)): print("Input Error: lmul") print(intf_LMUL.__doc__) return # Without doing much of anything. v2 = E.resolve_symbol(E.The.StackPop()) v1 = E.resolve_symbol(E.The.StackPop()) if not v2.whatami == 'VAL': v1, v2 = v2, v1 if v1.whatami == 'LST': outlist = v1.val * abs(int(v2.val)) else: # Both are vals. outlist = [v1] * abs(int(v2.val)) if v2.val < 0: outlist = outlist[::-1] E.The.StackPush(objectifier.StackOB_LST(outlist))
def intf_DISTWEIBULL(E): """Takes VALs from v1 and v2, and returns a value randomly generated by a function that produces values which are distributed in a Weibull distribution. This is often used to model processes related to failure rates, survival analysis, and reliability. The v2 VAL is Lambda which is the scale parameter for this kind of distribution. The v1 VAL is k which is the shape parameter. Both must be greater than zero. If k is 1 this is equivalent to the exponential distribution. If k is 2 it is equivalent to the Rayleigh distribution. A value of k < 1 indicates that the failure rate decreases over time. This happens if there is significant "infant mortality", or defective items failing early and the failure rate decreasing over time as the defective items are weeded out of the population. A value of k = 1 indicates that the failure rate is constant over time. This might suggest random external events are causing mortality, or failure. A value of k > 1 indicates that the failure rate increases with time. This happens if there is an "aging" process, or parts that are more likely to fail as time goes on. |[.75 1 distweibull::!] 100000 repeat 100000 2list mean -> 0.751247734665 """ if not inc.VAL(E, 1) or not inc.VAL(E, 2): print("Input Error: distweibull") print(intf_DISTWEIBULL.__doc__) return # Without doing much of anything. v1 = E.The.StackPop().val # k, beta, shape v2 = E.The.StackPop().val # Lambda, alpha, scale import random out = random.weibullvariate(v2, v1) out = objectifier.StackOB_VAL(out) E.The.StackPush(out)
def intf_PERM(E): """Number of possible permutations of v2 items taken v1 at a time. fact(v2) / fact(v2-v1) """ if not inc.VAL(E, 1) or not inc.VAL(E, 2): print("Input Error: perm") print(intf_PERM.__doc__) return # Without doing much of anything. v1 = int(E.The.StackPop().val) # Taken this many at a time. v2 = int(E.The.StackPop().val) # Combination of this many items. d = v2 - v1 out = fact(v2) / fact(d) out = objectifier.StackOB_VAL(out) E.The.StackPush(out)
def intf_GETN(E): """Returns from v2 LST object the value of the list component whose position is specified by v1 where v1 is a name from a named list. This can be specified as a SYM or TXT value. The alias is `>>`. `[1.1 2.2 3.3 4.4::x y z w] |z getn -> 3.3` `[1.1 2.2 3.3 4.4::x y z w] ''y'' >> -> 2.2` """ if not inc.list_and_list_position(E,2,1): print("Input Error: getn") print(intf_GETN.__doc__) return # Without doing much of anything. if inc.VAL(E,1): # If a number is tried, hand over to GET. intf_GET(E) return n= E.The.StackPop().val # Name lstob= E.The.StackPop() # List or text. out= None if lstob.whatami == "SYM": symkey= lstob.val lstob= E.symtab[symkey] if n in lstob.names: out= lstob.val[lstob.names.index(n)] else: # Not a SYM, just a LST. out= lstob.named_item(n) if out is not None: E.The.StackPush(out)
def intf_PUTN(E): """Takes list from v3 and a position from v2 and replaces the v3 item at v2 with the value of v1. This should also take a SYM of a list. If that is the case, the output should be nothing but the SYM should contain the updated list. If a LST is supplied as v3, then an updated list is returned.""" if not inc.list_and_list_position(E,3,2): print("Input Error: putn") print(intf_PUTN.__doc__) return # Without doing much of anything. if inc.VAL(E,2): # If a number is tried, hand over to PUT. intf_PUT(E) return newob= E.The.StackPop() # New object to insert. n= E.The.StackPop().val # Name lstob= E.The.StackPop() # List or text. symonly= False if lstob.whatami == "SYM": symkey= lstob.val lstob= E.symtab[symkey] symonly= True if n in lstob.names: lstob.val[lstob.names.index(n)]= newob if symonly: E.symtab[symkey]= lstob else: E.The.StackPush(lstob)
def intf_PUT(E): """Takes list from v3 and a position from v2 and replaces the v3 item at v2 with the value of v1. This should also take a SYM of a list. If that is the case, the output should be nothing but the SYM should contain the updated list. If a LST is supplied as v3, then an updated list is returned.""" if not inc.VAL(E,2) or not inc.listlike(E,3): print("Input Error: put") print(intf_PUT.__doc__) return # Without doing much of anything. ob1= E.The.StackPop() # List or text. n= int(E.The.StackPop().val) # Position. ob3= E.The.StackPop() # List or text. oblen= len(ob3.val) if oblen < n: n= oblen-1 elif n < 1: n= 0 else: n-= 1 if ob3.whatami == "TXT": listified= list(ob3.val) # Python strings are immutable. listified[n]= ob1.val ob3= objectifier.StackOB_TXT( ''.join(listified) ) else: if ob3.whatami == "SYM": ref2= E.resolve_symbol(ob3) if hasattr(ref2,'whatami') and ref2.whatami == 'LST': ref2.val[n]= ob1 else: print("Confusion.") else: ob3.val[n]= ob1 E.The.StackPush(ob3)
def intf_DISTGAUSS(E): """Takes VALs from v1 and v2 and returns a value randomly generated by a function that produces values which are distributed in a Gaussian distribution. The v2 VAL is the mean of the distribution. The v1 VAL is the distribution's standard deviation. |[.5 .2 distgauss::!] 100000 repeat 100000 2list dup mean swap sdev -> 0.500337044014 0.200301690936 """ if not inc.VAL(E, 1) or not inc.VAL(E, 2): print("Input Error: distgauss") print(intf_DISTGAUSS.__doc__) return # Without doing much of anything. v1 = E.The.StackPop().val # Standard deviation. v2 = E.The.StackPop().val # Mean. import random out = random.gauss(v2, v1) out = objectifier.StackOB_VAL(out) E.The.StackPush(out)
def intf_TAILN(E): """Returns a list or substring made of the first v1 items of a list or string (respectively) at v2.""" if not inc.VAL(E,1) or not inc.listlike(E,2): print("Input Error: tailn") print(intf_TAILN.__doc__) return # Without doing much of anything. n= int(E.The.StackPop().val) # Position. ob2= E.The.StackPop() # List or text. if ob2.whatami == "TXT": out= objectifier.StackOB_TXT( ob2.val[-n:] ) else: out= objectifier.StackOB_LST( ob2.val[-n:] ) E.The.StackPush(out)
def intf_SUB(E): """Substring or sublist. Takes a string or list object from v3 and a start position from v2 and an end position from v1 and returns the sub-string or sub-list (respectively) from v2 to v1. If v1 is less than v2, an empty string or list is returned. Any positional value less than 1 is treated as 1. Any positional value greater than the `len` of v3 will be treated as the `len` of v3. The positional values are inclusive such that if v2 is 2 and v3 is 4, both the 2nd (and 3rd) and 4th position items will be part of the returned sub-object. ''abcdefghijklmnopqrstuvwxyz'' 19 21 sub -> ''stu'' """ if not inc.VAL(E,1) or not inc.VAL(E,2) or not inc.listlike(E,3): print("Input Error: sub") print(intf_SUB.__doc__) return # Without doing much of anything. n2= int(E.The.StackPop().val) # End position. n1= int(E.The.StackPop().val) # Start position. ob3= E.The.StackPop() # List or text. oblen= len(ob3.val) if oblen < n1: n1= oblen-1 elif n1 < 1: n1= 0 else: n1-= 1 if oblen < n2: n2= oblen elif n2 < 1: n2= 0 else: pass # Ok. out= ob3.val[n1:n2] if ob3.whatami == "LST": out= objectifier.StackOB_LST( out ) elif ob3.whatami == "TXT": out= objectifier.StackOB_TXT( out ) E.The.StackPush(out)
def intf_DISTEXP(E): """Takes VAL from v1 and returns a value randomly generated by a function that produces values which are distributed in an exponential distribution. The v1 VAL is Lambda which is a parameter of this kind of distribution. The formula is `f(x,Lambda)= Lambda * exp(-Lambda * x)`. The mean is 1/Lambda and the variance is 1/(Lambda*Lambda). |[.75 distexp::!] 100000 repeat 100000 2list dup mean inv swap var inv sqrt -> 0.743701781531 0.742319134654 """ if not inc.VAL(E, 1): print("Input Error: distexp") print(intf_DISTEXP.__doc__) return # Without doing much of anything. v1 = E.The.StackPop( ).val # Lambda of the distribution, not Python's lambda. import random out = random.expovariate(v1) out = objectifier.StackOB_VAL(out) E.The.StackPush(out)
def intf_REPL(E): """Takes a string or list object from v3 and a position from v2 and a replacement string or list object from v1 and replaces the portion of v3 starting at v2 with v1. If v2 is less than 1 or greater than the `len` of v3, the items are simply concatenated, v1+v3 and v3+v1 respectively. [5 10 16 21 25] 3 [15 20] -> [5 10 15 20 25] ''abcdefghi'' 4 ''XYZ'' repl -> ''abcXYZghi'' """ if ( ( not inc.VAL(E,2) or not inc.listlike(E,1) or not inc.listlike(E,3) ) or ( inc.TXT(E,1) != inc.TXT(E,3) ) ): # If types don't match. print("Input Error: repl") print(intf_REPL.__doc__) return # Without doing much of anything. ob1= E.The.StackPop() # Replacement text or list n= int(E.The.StackPop().val) # Position. ob3ob= E.The.StackPop() # Original list or text. outistxt= (ob3ob.val == "TXT") oblen= len(ob3ob.val) if oblen < n: ob3= ob3ob.val+ob1.val elif n < 1: ob3= ob1.val+ob3ob.val else: n-= 1 if outistxt: ob3= list(ob3ob.val) # Python strings are immutable. else: ob3= ob3ob.val start= ob3ob.val[0:n] plusmid= start + ob1.val ob3= plusmid if len(plusmid) < oblen: ob3+= ob3ob.val[len(plusmid):] if outistxt: outob= objectifier.StackOB_TXT( ''.join(plusmid) ) else: outob= objectifier.StackOB_LST( ob3 ) E.The.StackPush(outob)
def intf_GET(E): """Returns from v2 LST object the value of the list component whose position is specified by v1. `[1.1 2.2 3.3 4.4] 3 get -> 3.3` See GETN for specifying position by list name. """ if not inc.VAL(E,1) or not inc.listlike(E,2): print("Input Error: get") print(intf_GET.__doc__) return # Without doing much of anything. n= int(E.The.StackPop().val) # Position. ob2= E.The.StackPop() # List or text. oblen= len(ob2.val) if oblen < n: n= oblen-1 elif n < 1: n= 0 else: n-= 1 if ob2.whatami == "TXT": out= objectifier.StackOB_TXT( ob2.val[n] ) else: out= objectifier.StackOB_LST( ob2.val[n] ) E.The.StackPush(out)
def intf_MUL(E): """Item multiplication operator where the values are the focus. Compare to `:*` where lists are the focus. Valid inputs: SYM SYM + -> (resolve any SYMs and proceed again) VAL VAL * -> simple multiplication TXT VAL * -> replication of text into concatenated text, commutative input LST_of_VALs VAL * -> list of each list item multiplied by VAL, commutative input LST_of_VALs LST_of_VALs * -> pad smaller with 1 and multiply each ith pos If two lists are multiplied, the shorter one is padded with ones to match the other. In the case of two lists and both have list names, the longest list's are used. Examples: 2 2 * -> 4 2 [1 2 3] * -> [2 4 6] 31.831 |diameter sto |diameter |pi * -> 100.000035756 [pi pi pi] pi inv * -> [1 1 1] [1 2 3] 2 * -> [2 4 6] [1 2 3] [1 2] * -> [1 4 3] Pad the shorter list with ones. [2 2] [4 4 4::x y z] * -> [8 8 4]<x y z> [1 2] [1 2 3] * -> [1 4 3] 4 ''ha'' * -> ''hahahaha'' ''backwards'' -2 * -> ''sdrawkcabsdrawkcab'' """ if not ((inc.TXT(E, 1) and inc.VAL(E, 2)) or (inc.VAL(E, 1) and inc.TXT(E, 2)) or ((inc.VAL(E, 1) or inc.LST_of_VALs(E, 1)) and (inc.VAL(E, 2) or inc.LST_of_VALs(E, 2)))): print("Input Error: mul") print(intf_MUL.__doc__) return # Without doing much of anything. v2 = E.resolve_symbol(E.The.StackPop()) v1 = E.resolve_symbol(E.The.StackPop()) if v1.whatami == 'VAL' and v2.whatami == 'VAL': E.The.StackPush(objectifier.StackOB_VAL(v1.val * v2.val)) elif v1.whatami == "TXT": if v2.val < 0: v1.val, v2.val = v1.val[::-1], v2.val * -1 # Do this for `neg`. E.The.StackPush(objectifier.StackOB_TXT(v1.val * int(v2.val))) elif v2.whatami == "TXT": if v1.val < 0: v2.val, v1.val = v2.val[::-1], v1.val * -1 # It's silly, I know. E.The.StackPush(objectifier.StackOB_TXT(v2.val * int(v1.val))) elif ((v1.whatami == 'LST' and v2.whatami == 'VAL') or (v1.whatami == 'VAL' and v2.whatami == 'LST')): # Mixed LST&VAL if v1.whatami == 'VAL': v1, v2 = v2, v1 # Ensure LST 1st then VAL 2nd outlist = list() for i in v1.val: if i.whatami == 'SYM': i = E.resolve_symbol(i) outlist.append(objectifier.StackOB_VAL(i.val * v2.val)) outlistob = objectifier.StackOB_LST(outlist) outlistob.names = v1.names[:] E.The.StackPush(outlistob) elif v1.whatami == 'LST' and v2.whatami == 'LST': lv1, lv2 = len(v1.val), len(v2.val) if lv1 < lv2: v1, v2 = v2, v1 # Longest LST first. lv1, lv2 = lv2, lv1 outlist = list() for n, i in enumerate(v1.val): if i.whatami == 'SYM': i = E.resolve_symbol(i) if n < lv2: if v2.val[n].whatami == 'SYM': froml2 = E.resolve_symbol(i) else: froml2 = v2.val[n] outlist.append(objectifier.StackOB_VAL(i.val * froml2.val)) else: outlist.append(objectifier.StackOB_VAL(i.val)) outlistob = objectifier.StackOB_LST(outlist) if not v1.names and v2.names: # If both have names go with v1's. v1, v2 = v2, v1 outlistob.names = v1.names[:] E.The.StackPush(outlistob) else: print( "Error: What the hell have you done!? This should never have happend. See `intf_MUL`." ) E.Undo.StackPush([objectifier.StackOB_SYM('drop'), v2, v1])
def intf_ADD(E): """Item addition operator where the values are the focus. Compare to `:+` where lists are the focus. All SYMs are resolved. Valid inputs: TXT TXT + -> concatenate text VAL VAL + -> simple addition, commutative LST_of_VALs VAL + -> add VAL to all items in list (of values), commutative LST_of_VALs LST_of_VALs + -> pad smaller with zero and add each ith pos, commutative If two lists are added, the shorter one is padded with zeros to match the other. In the case of two lists and both have list names, the longest list's are used. Examples: 2 2 + -> 4 |pi pi + 2deg -> 360 [pi 10::a b] |Q sto -180 2rad Q.a + -> 0 [4 8] 3 + -> [7 11] [4 8] [2 3] + -> [6 11] [4 8] [2 3] + -> [6 11] [4 8 3] [2 3] + -> [6 11 3] [4 8] [1 2 3] + -> [5 10 3] [0 4] [1 2 3] + -> [1 6 3] [1 2 3::a b c] [2 2 2::x y z] + -> [3 4 5]<a b c> ''xed'' ''.ch'' + -> ''xed.ch'' """ if not ((inc.TXT(E, 1) and inc.TXT(E, 2)) or ((inc.VAL(E, 1) or inc.LST_of_VALs(E, 1)) and (inc.VAL(E, 2) or inc.LST_of_VALs(E, 2)))): print("Input Error: add") print(inc.LST_of_VALs(E, 1)) print(inc.LST_of_VALs(E, 2)) print(" Value 1:" + str(E.The.StackPop())) print(" Value 2:" + str(E.The.StackPop())) print(intf_ADD.__doc__) return # Without doing much of anything. v2 = E.resolve_symbol(E.The.StackPop()) v1 = E.resolve_symbol(E.The.StackPop()) if v1.whatami == 'TXT': # v2's been checked. E.The.StackPush(objectifier.StackOB_TXT(v1.val + v2.val)) elif v1.whatami == 'VAL' and v2.whatami == 'VAL': E.The.StackPush(objectifier.StackOB_VAL(v1.val + v2.val)) elif ((v1.whatami == 'LST' and v2.whatami == 'VAL') or (v1.whatami == 'VAL' and v2.whatami == 'LST')): # Mixed LST&VAL if v1.whatami == 'VAL': v1, v2 = v2, v1 # Ensure LST 1st then VAL 2nd outlist = list() for i in v1.val: if i.whatami == 'SYM': i = E.resolve_symbol(i) outlist.append(objectifier.StackOB_VAL(i.val + v2.val)) outlistob = objectifier.StackOB_LST(outlist) outlistob.names = v1.names[:] E.The.StackPush(outlistob) elif v1.whatami == 'LST' and v2.whatami == 'LST': lv1, lv2 = len(v1.val), len(v2.val) if lv1 < lv2: v1, v2 = v2, v1 # Longest LST first. lv1, lv2 = lv2, lv1 outlist = list() for n, i in enumerate(v1.val): if i.whatami == 'SYM': i = E.resolve_symbol(i) if n < lv2: if v2.val[n].whatami == 'SYM': froml2 = E.resolve_symbol(i) else: froml2 = v2.val[n] outlist.append(objectifier.StackOB_VAL(i.val + froml2.val)) else: outlist.append(objectifier.StackOB_VAL(i.val)) outlistob = objectifier.StackOB_LST(outlist) if not v1.names and v2.names: # If both have names go with v1's. v1, v2 = v2, v1 outlistob.names = v1.names[:] E.The.StackPush(outlistob) else: print( "Error: What the hell have you done!? This should never have happend. See `intf_ADD`." ) E.Undo.StackPush([objectifier.StackOB_SYM('drop'), v2, v1])