def testModelHasExpectedNumberOfParameters(self): batch_size = 5 height, width = 224, 224 inputs = tf.random_uniform((batch_size, height, width, 3)) with slim.arg_scope(inception_v1.inception_v1_arg_scope()): inception_v1.inception_v1_base(inputs) total_params, _ = slim.model_analyzer.analyze_vars( slim.get_model_variables()) self.assertAlmostEqual(5607184, total_params)
def testBuildAndCheckAllEndPointsUptoMixed5c(self): batch_size = 5 height, width = 224, 224 inputs = tf.random_uniform((batch_size, height, width, 3)) _, end_points = inception_v1.inception_v1_base( inputs, final_endpoint='Mixed_5c') endpoints_shapes = { 'Conv2d_1a_7x7': [5, 112, 112, 64], 'MaxPool_2a_3x3': [5, 56, 56, 64], 'Conv2d_2b_1x1': [5, 56, 56, 64], 'Conv2d_2c_3x3': [5, 56, 56, 192], 'MaxPool_3a_3x3': [5, 28, 28, 192], 'Mixed_3b': [5, 28, 28, 256], 'Mixed_3c': [5, 28, 28, 480], 'MaxPool_4a_3x3': [5, 14, 14, 480], 'Mixed_4b': [5, 14, 14, 512], 'Mixed_4c': [5, 14, 14, 512], 'Mixed_4d': [5, 14, 14, 512], 'Mixed_4e': [5, 14, 14, 528], 'Mixed_4f': [5, 14, 14, 832], 'MaxPool_5a_2x2': [5, 7, 7, 832], 'Mixed_5b': [5, 7, 7, 832], 'Mixed_5c': [5, 7, 7, 1024] } self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys()) for endpoint_name in endpoints_shapes: expected_shape = endpoints_shapes[endpoint_name] self.assertTrue(endpoint_name in end_points) self.assertListEqual( end_points[endpoint_name].get_shape().as_list(), expected_shape)
def __init__(self, inputs, labels, num_frame): # inputs is a placeholder shape=[batch_size, None, 640, 380, 3] self.input = inputs self.feature_maps = [] self.label = labels self.label = labels # load the parameters in the session # calculate the convs # self.net, self.endpoints = inception_v1.inception_v1_base(inputs=self.input, # final_endpoint='Mixed_5c', # scope='InceptionV1') # prepare the feature map of videos for i in range(self.input.shape[0]): tmp = [] for j in range(num_frame[i]): net = inception_v1.inception_v1_base(inputs=self.input[i][j], final_endpoint='Mixed_5c', scope='InceptionV1') net = tf.reshape(net, shape=[1, -1]) tmp.append(net) self.feature_maps.append(tmp) self._rnn_ = self.get_dynamic_lstm() self._initial_state_ = self._rnn_.zero_state( rnn_batch_size, LSTMAutoencoder.data_type()) self.state = self._initial_state_ self._output, self.state = tf.nn.dynamic_rnn( self._rnn_, inputs=self.feature_maps, dtype=LSTMAutoencoder.data_type()) # self.output's shape is [batch_size, max_video_length, 1024] # then we must get each last cell's output of the videos self.lstm_output = [] for i in range(self.input.shape[0]): j = self.input[i].shape[0] self.lstm_output.append(self._output[i][j - 1]) weight = tf.Variable( tf.truncated_normal([1024, 9], mean=0.1, stddev=1.0, dtype=tf.float32)) bias = tf.Variable( tf.truncated_normal(shape=[10], mean=0.1, stddev=1.0, dtype=tf.float32)) y_ = [] for _ in self.input.shape[0]: y_.append(tf.matmul(self.lstm_output[_], weight) + bias) self.loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(y_, self.label)) self.train = tf.train.GradientDescentOptimizer(0.9).minimize(self.loss)
def testHalfSizeImages(self): batch_size = 5 height, width = 112, 112 inputs = tf.random_uniform((batch_size, height, width, 3)) mixed_5c, _ = inception_v1.inception_v1_base(inputs) self.assertTrue(mixed_5c.op.name.startswith('InceptionV1/Mixed_5c')) self.assertListEqual(mixed_5c.get_shape().as_list(), [batch_size, 4, 4, 1024])
def testBuildBaseNetwork(self): batch_size = 5 height, width = 224, 224 inputs = tf.random_uniform((batch_size, height, width, 3)) mixed_6c, end_points = inception_v1.inception_v1_base(inputs) self.assertTrue(mixed_6c.op.name.startswith('InceptionV1/Mixed_5c')) self.assertListEqual(mixed_6c.get_shape().as_list(), [batch_size, 7, 7, 1024]) expected_endpoints = [ 'Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1', 'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c', 'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_4f', 'MaxPool_5a_2x2', 'Mixed_5b', 'Mixed_5c' ] self.assertItemsEqual(end_points.keys(), expected_endpoints)
def testBuildOnlyUptoFinalEndpoint(self): batch_size = 5 height, width = 224, 224 endpoints = [ 'Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1', 'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c', 'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_4f', 'MaxPool_5a_2x2', 'Mixed_5b', 'Mixed_5c' ] for index, endpoint in enumerate(endpoints): with tf.Graph().as_default(): inputs = tf.random_uniform((batch_size, height, width, 3)) out_tensor, end_points = inception_v1.inception_v1_base( inputs, final_endpoint=endpoint) self.assertTrue( out_tensor.op.name.startswith('InceptionV1/' + endpoint)) self.assertItemsEqual(endpoints[:index + 1], end_points.keys())