Exemple #1
0
    ### Es importante indicar (cuando proceda) que isdata = 0 para que se aplique la normalizacion
    treeMC = Sample.Tree(fileName=helper.selectSamples(
        WORKPATH + 'dat/Samples_cern.dat', Backgrounds, 'MC'),
                         name='MC',
                         isdata=0)
    treeSI = Sample.Tree(fileName=helper.selectSamples(
        WORKPATH + 'dat/Samples_cern.dat', Signals, 'SI'),
                         name='SI',
                         isdata=0)

    ############# DEFINICION DE CORTES
    ### Como ejemplo pongo algunos de los cortes basicos de los displaced global muon pais (DMDM)
    ### Hay algunos definidos en include/CutManager, pero desde aqui podeis definir los que querais
    ### La sintaxis es la que se utilizaria con el metodo .Draw de un TTree normal

    cuts = CutManager.CutManager()  # Clase CutManager
    haveDMDM = cuts.brackets('nDMDMBase > 0')  # Corte 1
    lowPhi = cuts.brackets(
        'fabs(DMDMBase_dPhi[DMDMBase_maxIxy])< 3.14/2.0')  # Corte 2
    allcuts = cuts.AddListB([haveDMDM,
                             lowPhi])  # Combinamos ambos en un unico string

    ############# EJEMPLOS:

    ### --> Ejemplo de coger un TH1F con getTH1F():
    ###      Nombre del histograma: 'hBCK' (fondo con treeMC) y 'hSig' (senyal con treeSI)
    ###      Normalizado a la lumi
    ###      Variable que ploteamos: Distancia transversa del vertice del primer DMDM candidate
    ###      En 20 bins, de 0 a 10 (nos pintara overflow tambien)
    ###      options: Nunca lo uso
    ###      xlabel: El label del eje x
    hist_E_relPFIso      = r.TH1F("hist_E_relPFIso", "", 50, 0, 1)
    hist_E_relPFIso_log  = r.TH1F("hist_E_relPFIso_log", "", len(bin_iso_log) -1, bin_iso_log)
    hist_M_relPFIso      = r.TH1F("hist_M_relPFIso", "", 50, 0, 1)
    hist_M_relPFIso_log  = r.TH1F("hist_M_relPFIso_log", "", len(bin_iso_log) -1, bin_iso_log)

    #########################
    ####   Load sample   ####
    #########################

    treeBKG = Sample.Tree( fileName = helper.selectSamples(GALAPAGOPATH + 'dat/Samples_cern_UltraLegacy.dat', ['WW_postVFP', 'WZ_postVFP'], 'MC'), name = '2016', isdata = 0 )


    ###################################
    ####   Loop over tree events   ####
    ###################################
    cm = CutManager.CutManager()

    for b in treeBKG.blocks:
        for s in b.samples:
            for t in s.ttrees:

                print('New tree with:', t.GetEntries())

                for e,ev in enumerate(t):

                    if e > 500000: break
                    #if not eval(cm.epath2016): continue

                    # Count number of hard process leptons:
                    hasLepton = False
                    for j in range(0, ev.nHardProcessParticle):
    def __init__(self, outdir, treename, blockname, samplename, samplenumber, lumiweight, isdata, year = '2016'):

        ### outdir: Path where the root file will be stored
        ### treename: Name of the (Galapago) Tree (MC; DATA; SI)
        ### blockname: Name of the (Galapago) Block
        ### samplename: Name of the sample
        ### samplenumber: Number of the sample file/ttree

        self.outdir = outdir
        if self.outdir[-1] != '/': self.outdir = self.outdir + '/' 
        self.filename = self.outdir + '{0}__{1}__{2}__{3}.root'.format(treename, blockname, samplename, str(samplenumber))
        self.treename = treename
        self.blockname = blockname
        self.samplename = samplename
        self.samplenumber = samplenumber
        self.lumiweight = lumiweight
        self.isdata = isdata
        self.year = year
        self.cm = CutManager.CutManager()
        self.sufix = '__{0}__{1}__{2}__{3}'.format(treename, blockname, samplename, str(samplenumber))



        ## Init histogram efficiencies
        self.declareEfficiencies()

        #### ------------------------------
        #### ---- Set year configuration
        #### ------------------------------
        self.mumu_path      = 'False'
        self.mumu_selection = 'False'
        self.ee_path        = 'False'
        self.ee_selection   = 'False'
        if year=='2016':
            self.mumu_path      = self.cm.mupath2016
            self.ee_path        = self.cm.epath2016
            self.mumu_selection = self.cm.MM_BS2016
            self.ee_selection   = self.cm.EE_BS2016
        elif year=='2017':
            self.ee_path        = self.cm.epath2017
            self.ee_selection   = self.cm.EE_BS2017
        elif year=='2018':
            self.mumu_path      = self.cm.mupath2018
            self.ee_path        = self.cm.epath2018
            self.mumu_selection = self.cm.MM_BS2018
            self.ee_selection   = self.cm.EE_BS2018

        #### ------------------------------
        #### ---- Regions initialization
        #### ------------------------------
    
        self.dielectronRegions = [] # region name : region cut
        self.declareDielectronRegions()
        
        self.dimuonRegions = [] # region name : region cut
        self.declareDimuonRegions()


        #### -------------------------------
        #### ---- Histogram initialization
        #### -------------------------------
        self.hEE_yield = r.TH1F('hEE_yield' + self.sufix, ';Passed photon trigger;', 1, 0, 1)
        self.hEE_nBSEE          = {}
        self.hEE_nPU            = {}
        self.hEE_dPhi           = {}
        self.hEE_dPhi_inv       = {}
        self.hEE_mass           = {}
        self.hEE_cosAlpha       = {}
        self.hEE_trackIxy       = {}
        self.hEE_trackIxy_log   = {}
        self.hEE_trackDxy       = {}
        self.hEE_sigmaD         = {}
        self.hEE_Lxy            = {}
        self.hEE_Ixy            = {}
        self.hEE_leadingEt      = {}
        self.hEE_subleadingEt   = {}
        self.hEE_normalizedChi2 = {}
        self.hEE_vx_vy          = {}
        for region in self.dielectronRegions:
            region_name = region[0]
            self.declareDielectronHistograms(region_name)

        self.hMM_yield = r.TH1F('hMM_yield' + self.sufix, ';Passed muon trigger;', 1, 0, 1)
        self.hMM_nBSMM          = {}
        self.hMM_nPU            = {}
        self.hMM_dPhi           = {}
        self.hMM_dPhi_inv       = {}
        self.hMM_mass           = {}
        self.hMM_cosAlpha       = {}
        self.hMM_trackIxy       = {}
        self.hMM_trackIxy_log   = {}
        self.hMM_trackDxy       = {}
        self.hMM_sigmaD         = {}
        self.hMM_Lxy            = {}
        self.hMM_Ixy            = {}
        self.hMM_leadingPt      = {}
        self.hMM_subleadingPt   = {}
        self.hMM_normalizedChi2 = {}
        self.hMM_vx_vy          = {}
        for region in self.dimuonRegions:
            region_name = region[0]
            self.declareDimuonHistograms(region_name)



        #### --------------------------------
        #### ---- Apply sumw2 to histograms
        #### --------------------------------

        for attr, value in self.__dict__.items():
            if attr[0] == 'h': 
                if type(value) == dict:
                    for key in value.keys():
                        value[key].Sumw2()
                else:
                    value.Sumw2()
    treeEGDATA = Sample.Tree(fileName=helper.selectSamples(
        WORKPATH + filename, DoubleEG, 'DATA'),
                             name='DATA',
                             isdata=1)
    treeMuonDATA = Sample.Tree(fileName=helper.selectSamples(
        WORKPATH + filename, DoubleMuon, 'DATA'),
                               name='DATA',
                               isdata=1)
    treeMC = Sample.Tree(fileName=helper.selectSamples(WORKPATH + filename,
                                                       Backgrounds, 'MC'),
                         name='MC',
                         isdata=0)

    ############# Cut definition
    cuts = CutManager.CutManager()
    EESR = cuts.AddListB(
        [cuts.nTrack, cuts.EEChannel, cuts.haveEEBase, cuts.EESR_dPhi])
    EECR = cuts.AddListB(
        [cuts.nTrack, cuts.EEChannel, cuts.haveEEBase, cuts.EECR_dPhi])
    MMSR = cuts.AddListB([
        cuts.nTrack, cuts.MMChannel, cuts.haveMM, cuts.MMSR_dPhi,
        cuts.cosmicRejection
    ])
    MMCR = cuts.AddListB([
        cuts.nTrack, cuts.MMChannel, cuts.haveMM, cuts.MMCR_dPhi,
        cuts.cosmicRejection
    ])

    ############# Plotting
    start_time = time.time()