Exemple #1
0
def test_closure_recursion():
    pytest.skip("what is this supposed to test?")
    s1 = StateSet()
    s1.add(LR1Element(Production(Z, [E]), 0, set([finish])), [finish])

    closure = helper1.closure_1(s1)
    assert len(closure.elements) == 4
    assert LR1Element(Production(Z, [E]), 0, set([finish])) in closure
    assert LR1Element(Production(E, [P]), 0, set([plus, finish])) in closure
    assert LR1Element(Production(E, [E, plus, P]), 0, set([plus, finish])) in closure
    assert LR1Element(Production(P, [a]), 0, set([plus, finish])) in closure
Exemple #2
0
def test_goto_0():
    ss = StateSet([State(Production(Z, [S]), 0)])
    closure = helper1.closure_0(ss)
    g1 = helper1.goto_0(closure, b)
    expected = helper1.closure_0(StateSet([State(Production(S, [b, A, a]), 1)]))
    assert expected.elements == g1.elements
    g2 = helper1.goto_0(closure, a)
    assert set([State(Production(S, [a]), 1)]) == g2.elements

    assert helper1.goto_0(closure, c) == StateSet()
    assert helper1.goto_0(closure, d) == StateSet()
    assert helper1.goto_0(closure, f) == StateSet()
Exemple #3
0
def test_closure_1():
    s1 = StateSet()
    s1.add(LR1Element(Production(Z, [S]), 0, set([finish])), [finish])
    closure = helper1.closure_1(s1)
    assert len(closure.elements) == 4
    assert LR1Element(Production(Z, [S]), 0, set([finish])) in closure
    assert LR1Element(Production(S, [S, b]), 0, set([b, finish])) in closure
    assert LR1Element(Production(S, [b, A, a]), 0, set([b, finish])) in closure
    assert LR1Element(Production(S, [a]), 0, set([b, finish])) in closure

    s2 = StateSet()
    s2.add(LR1Element(Production(F, [C, D, f]), 0, set([finish])), [finish])
    closure = helper1.closure_1(s2)
    assert len(closure.elements) == 4
    assert LR1Element(Production(F, [C, D, f]), 0, set([finish])) in closure
    assert LR1Element(Production(C, [D, A]), 0, set([d, f])) in closure
    assert LR1Element(Production(D, [d]), 0, set([a])) in closure
    assert LR1Element(Production(D, [epsilon]), 1, set([a])) in closure
 def parse_rule(self, node):
     name = node.children[0].symbol.name
     self.current_rulename = name
     alternatives = self.parse_alternatives(node.children[4])
     symbol = Nonterminal(name)
     if self.start_symbol is None:
         self.start_symbol = symbol
     if self.change_startrule and symbol.name == self.change_startrule:
         self.start_symbol = symbol
     r = Rule(symbol)
     for a in alternatives:
         r.add_alternative(a[0], a[1], a[2])
         self.prod_ids[Production(symbol, a[0])] = len(self.prod_ids)
     # add additional alternatives to the grammar (grammar extension feature, e.g. languageboxes)
     if self.extra_alternatives.has_key(symbol.name):
         for n in self.extra_alternatives[symbol.name]:
             a = [MagicTerminal(n), Nonterminal("WS")]
             r.add_alternative(a)
             self.prod_ids[Production(symbol, a)] = len(self.prod_ids)
     self.rules[symbol] = r
Exemple #5
0
    S ::= "b" A "d"
    A ::= "c"
        |
"""

p = Parser(grammar)
p.parse()
r = p.rules

b = Terminal("b")
c = Terminal("c")
d = Terminal("d")
S = Nonterminal("S")
A = Nonterminal("A")

S_bAd = Production(S, [b, A, d])
A_c = Production(A, [c])
A_None = Production(A, [Epsilon()])

syntaxtable = {
    (0, b): Shift(2),
    (0, S): Goto(1),
    (1, FinishSymbol()): Accept(),
    (2, c): Shift(4),
    (2, A): Goto(3),
    (2, d): Reduce(A_None),
    (3, d): Shift(5),
    (4, d): Reduce(A_c),
    (5, FinishSymbol()): Reduce(S_bAd),
}
    def create_parser(self, pickle_id=None):
        self.all_terminals.update(self.terminals)

        for fname, terminals, parentrule in self.functions:
            if fname.startswith("*match_until"):
                if Nonterminal(fname) not in self.rules:
                    r = Rule(Nonterminal(fname))
                    for t in self.all_terminals:
                        if t not in terminals:
                            r.add_alternative(
                                [Nonterminal(fname),
                                 Terminal(t)], None, t)
                    r.add_alternative([])
                    self.rules[r.symbol] = r
                # remove whitespace before special rule from parent rule, e.g.
                # multistring ::= "MLS" WS *match_until "MLS" WS
                #                       ^ this WS causes shift/reduce conflicts
                prule = self.rules[Nonterminal(parentrule)]
                for a in prule.alternatives:
                    for i in range(len(a)):
                        sym = a[i]
                        if sym.name == "WS":
                            if len(a) > i + 1 and a[i + 1].name.startswith(
                                    "*match_until"):
                                a.pop(i)
                                break

        if self.implicit_ws():
            ws_rule = Rule()
            ws_rule.symbol = Nonterminal("WS")
            ws_rule.add_alternative([Nonterminal("WS"), Terminal("<ws>")])
            # get comment rule
            if self.options.has_key('comment_rule'):
                cmt_rules = self.options['comment_rule']
                for cmt_rule in cmt_rules:
                    if Nonterminal(cmt_rule) in self.rules:
                        ws_rule.add_alternative(
                            [Nonterminal("WS"),
                             Nonterminal("comment")])
            if self.implicit_newlines():
                ws_rule.add_alternative(
                    [Nonterminal("WS"),
                     Terminal("<return>")])
                ws_rule.add_alternative([
                    Nonterminal("WS"),
                    Terminal("<backslash>"),
                    Terminal("<return>")
                ])
            ws_rule.add_alternative([])  # or empty
            self.rules[ws_rule.symbol] = ws_rule
            for a in ws_rule.alternatives:
                self.prod_ids[Production(ws_rule.symbol,
                                         a)] = len(self.prod_ids)

            # allow whitespace/comments at beginning of file
            start_rule = Rule()
            start_rule.symbol = Nonterminal("Startrule")
            start_rule.add_alternative([Nonterminal("WS"), self.start_symbol])
            self.rules[start_rule.symbol] = start_rule
            self.prod_ids[Production(start_rule.symbol,
                                     start_rule.alternatives[0])] = len(
                                         self.prod_ids)
            self.start_symbol = start_rule.symbol

        incparser = IncParser()
        incparser.from_dict(self.rules, self.start_symbol, self.lr_type,
                            self.implicit_ws(), pickle_id, self.precedences,
                            self.prod_ids)
        incparser.init_ast()
        self.incparser = incparser
Exemple #7
0
        | "a"
        | "a" S "b"
"""

p = Parser(grammar)
p.parse()
r = p.rules

a = Terminal("a")
b = Terminal("b")
c = Terminal("c")
Z = Nonterminal("Z")
S = Nonterminal("S")
A = Nonterminal("A")

None_S = State(Production(None, [S]), 0)
S_Sb = State(Production(S, [S, b]), 0)
S_bAa = State(Production(S, [b, A, a]), 0)
A_aSc = State(Production(A, [a, S, c]), 0)
A_a = State(Production(A, [a]), 0)
A_aSb = State(Production(A, [a, S, b]), 0)

graph = StateGraph(p.start_symbol, p.rules, 1)
graph.build()


def move_dot(state, i):
    temp = state.clone()
    temp.d += i
    return temp
Exemple #8
0
def test_graph():
    pytest.skip("conversion is not working yet")
    graph = StateGraph(p.start_symbol, p.rules, 1)
    graph.build()

    s0 = StateSet([
        LR1Element(Production(None, [S]), 0, set([f])),
        LR1Element(Production(S, [b, A, c]), 0, set([f])),
    ])

    s1 = StateSet([
        LR1Element(Production(S, [b, A, c]), 1, set([f])),
        LR1Element(Production(A, [S]), 0, set([c])),
        LR1Element(Production(A, [a]), 0, set([c])),
        LR1Element(Production(S, [b, A, c]), 0, set([c])),
    ])

    s2 = StateSet([
        LR1Element(Production(S, [b, A, c]), 1, set([c])),
        LR1Element(Production(A, [S]), 0, set([c])),
        LR1Element(Production(A, [a]), 0, set([c])),
        LR1Element(Production(S, [b, A, c]), 0, set([c])),
    ])

    s3 = StateSet([
        LR1Element(Production(A, [a]), 1, set([c])),
    ])

    s4 = StateSet([
        LR1Element(Production(None, [S]), 1, set([f])),
    ])

    s5 = StateSet([
        LR1Element(Production(S, [b, A, c]), 2, set([f])),
    ])

    s6 = StateSet([
        LR1Element(Production(S, [b, A, c]), 2, set([c])),
    ])

    s7 = StateSet([
        LR1Element(Production(A, [S]), 1, set([c])),
    ])

    s8 = StateSet([
        LR1Element(Production(S, [b, A, c]), 3, set([f])),
    ])

    s9 = StateSet([
        LR1Element(Production(S, [b, A, c]), 3, set([c])),
    ])

    assert len(graph.state_sets) == 10
    assert s0 in graph.state_sets
    assert s1 in graph.state_sets
    assert s2 in graph.state_sets
    assert s3 in graph.state_sets
    assert s4 in graph.state_sets
    assert s6 in graph.state_sets
    assert s7 in graph.state_sets
    assert s8 in graph.state_sets
    assert s9 in graph.state_sets

    graph.convert_lalr()

    s0 = StateSet([
        LR1Element(Production(None, [S]), 0, set([f])),
        LR1Element(Production(S, [b, A, c]), 0, set([f])),
    ])

    s1 = StateSet([
        LR1Element(Production(S, [b, A, c]), 1, set([f, c])),
        LR1Element(Production(A, [S]), 0, set([c])),
        LR1Element(Production(A, [a]), 0, set([c])),
        LR1Element(Production(S, [b, A, c]), 0, set([c])),
    ])

    s2 = StateSet([
        LR1Element(Production(A, [a]), 1, set([c])),
    ])

    s3 = StateSet([
        LR1Element(Production(None, [S]), 1, set([f])),
    ])

    s4 = StateSet([
        LR1Element(Production(S, [b, A, c]), 2, set([f, c])),
    ])

    s5 = StateSet([
        LR1Element(Production(A, [S]), 1, set([c])),
    ])

    s6 = StateSet([
        LR1Element(Production(S, [b, A, c]), 3, set([f, c])),
    ])

    assert len(graph.state_sets) == 7
    assert s0 in graph.state_sets
    assert s1 in graph.state_sets
    assert s2 in graph.state_sets
    assert s3 in graph.state_sets
    assert s4 in graph.state_sets
    assert s6 in graph.state_sets
Exemple #9
0
def test_goto_1():
    lre = LR1Element(Production(Z, [S]), 0, set([finish]))
    clone = lre.clone()

    assert lre == clone
Exemple #10
0
def test_closure_0():
    s1 = StateSet()
    s =  State(Production(Nonterminal("Z"), [Nonterminal("S")]), 0) # first state Z ::= .S
    s1.add(s)
    closure = helper1.closure_0(s1)
    assert len(closure.elements) == 4
    assert State(Production(Z, [S]), 0) in closure
    assert State(Production(S, [S, b]), 0) in closure
    assert State(Production(S, [b, A, a]), 0) in closure
    assert State(Production(S, [a]), 0) in closure

    s2 = StateSet()
    s =  State(Production(F, [C, D, f]), 0)
    s2.add(s)
    closure = helper1.closure_0(s2)
    assert len(closure.elements) == 4
    assert State(Production(F, [C, D, f]), 0) in closure
    assert State(Production(C, [D, A]), 0) in closure
    assert State(Production(D, [d]), 0) in closure
    assert State(Production(D, [Epsilon()]), 1) in closure

    s3 = StateSet()
    s =  State(Production(C, [D, A]), 1)
    s3.add(s)
    closure = helper1.closure_0(s3)
    assert len(closure.elements) == 4
    assert State(Production(C, [D, A]), 1) in closure
    assert State(Production(A, [a, S, c]), 0) in closure
    assert State(Production(A, [a, S, b]), 0) in closure
    assert State(Production(A, [a]), 0) in closure