Exemple #1
0
def test2():
    """
        tests todo
    """
    print( 'testing ZIP data processing...')
    fname = "HPI_AT_ZIP5.txt"
    annual = indexTools.read_zip_house_price_data( "data/" + fname )

    answer = dict()
    answer[ "HPI_AT_ZIP5.txt 1994 2002" ] = \
      [('80205', 13.660048147719017), ('02143', 11.966500098655452), ('96792', -2.854788072761205)]
    answer[ "HPI_AT_ZIP5.txt 1995 1996" ] = \
      [('02650', 60.7489425230157), ('46186', 26.705136694730868), ('13204', -35.465021912027275)]
    answer[ "HPI_AT_ZIP5.txt 2006 2008" ] = \
      [('52037', 20.656522375739293), ('47231', 16.33947277520282), ('93635', -35.20316697877354)]



    for year in [ (1994,2002), (1995,1996), (2006,2008) ]:

        print( '= ' * 27 )
        trends = trending.calculate_trends( annual, year[0], year[1] )

        results = [ trends[0], trends[9], trends[-1] ]    # sampling

        key = fname + " " + str(year[0]) + " " + str(year[1])

        print( fname, str(year[0]), str(year[1]), ":", ( results == answer[ key ] ))

    return
Exemple #2
0
def test2():
    """
        tests volatility calculations for zip code data sets.
    """
    print('testing ZIP data processing...')
    fname = "HPI_AT_ZIP5.txt"

    annual = indexTools.read_zip_house_price_data("data/" + fname)

    answer = \
      [('95129', 623.4638267500322), ('95014', 573.4712827751273), ('95032', 571.0663306170637), ('54442', 1.9823622272430441), ('65035', 1.7312261550704462), ('65075', 1.3242144841376704)]

    measures = volatility.measure_volatility(annual)

    results = [measures[i] for i in [0, 1, 2, -3, -2, -1]]

    if results == answer:
        print(fname, ":", True)
    else:
        print(fname, ":", "incorrect", results)
    return
Exemple #3
0
def test1():
    """
        The function reads a dataset file, 
        annualizes the dataset values, and
        uses a canned sequence of names to plot to get plot data and
        check it against expected values.
    """

    # test with subset of data files
    for fname in [ "HPI_PO_state.txt", "HPI_AT_ZIP5.txt"]:

        print( "=" * 72 )
        print( "\nReading", fname, "..." )

        if "ZIP" in fname:
            # read a house price index file with Zip code key.
            # note: Zip data is already annualized
            annual = indexTools.read_zip_house_price_data( 'data/' + fname )

            # this keylist has data with some gaps
            keylist = [ "04083", "14625", "48210", "12202" ]

        else:
            data = indexTools.read_state_house_price_data( 'data/' + fname )
            # state data must be annualized for the timeline plots.
            annual = indexTools.annualize( data )

            keylist = [ "NY", "IL", "MA", "VT", "MS" ]

        # filter the data to get a subrange
        annual = timelinePlot.filter_years( annual, 1988, 2008 )

        # call the functions for plotting

        timelinePlot.plot_HPI( annual, keylist)

        timelinePlot.plot_whiskers( annual, keylist)

    return
Exemple #4
0
def test2():
    """
        tests periodRanking.annual_data() 
    """
    print( 'testing ZIP data processing...')
    fname = "HPI_AT_ZIP5.txt"

    data = indexTools.read_zip_house_price_data( "data/" + fname )

    answer = dict()
    answer["HPI_AT_ZIP5.txt 1996"] = [('95129', 580.09), ('94086', 533.61)]
    answer["HPI_AT_ZIP5.txt 2003"] = [('93117', 1156.19), ('94112', 1056.11)]
    answer["HPI_AT_ZIP5.txt 2006"] = [('95129', 1592.33), ('95127', 1535.7)]
    answer["HPI_AT_ZIP5.txt 2014"] = [('95014', 1999.64), ('94110', 1765.75)]
    
    for year in [ 1996, 2003, 2006, 2014]:
        results = periodRanking.annual_data( data, year)
        key = fname + " " + str(year)
        #print( key )
        if key in answer:
            print( fname, str( year), ":", ( results[1:11:9] == answer[ key] ))
        else:
            print( fname, str( year), ":", "incorrect", results[1:11:9] )
    return