def testPolicy(self, symbol = "JPM", \
        sd=dt.datetime(2009,1,1), \
        ed=dt.datetime(2010,1,1), \
        sv = 10000):
        indicators = compute_indicators(symbols=['JPM'],
                                        sd=sd,
                                        ed=ed,
                                        lookback=14,
                                        gen_plot=False)
        self.discreticize(indicators)

        # here we build a fake set of trades
        # your code should return the same sort of data
        dates = pd.date_range(sd, ed)
        prices_all = ut.get_data([symbol], dates)  # automatically adds SPY
        trades = prices_all[[
            symbol,
        ]]  # only portfolio symbols
        trades_SPY = prices_all['SPY']  # only SPY, for comparison later
        trades.values[:, :] = 0  # set them all to nothing
        trades.values[0, :] = 1000  # add a BUY at the start
        trades.values[40, :] = -1000  # add a SELL
        trades.values[41, :] = 1000  # add a BUY
        trades.values[60, :] = -2000  # go short from long
        trades.values[61, :] = 2000  # go long from short
        trades.values[-1, :] = -1000  #exit on the last day
        if self.verbose: print type(trades)  # it better be a DataFrame!
        if self.verbose: print trades
        if self.verbose: print prices_all
        return trades
Exemple #2
0
 def addEvidence(self, symbol = "IBM", \
     sd=dt.datetime(2008,1,1), \
     ed=dt.datetime(2009,1,1), \
     sv = 10000):
     rolling_days = 30
     sd_original = sd
     sd = sd - dt.timedelta(2 * rolling_days)
     prices_normalized, prices_sma_ratio, momentum, bb_percent, volume = ind.compute_indicators(
         sd, ed, syms=[symbol], rolling_days=rolling_days)
     indicators = pd.concat([prices_sma_ratio, momentum, bb_percent['BBP']],
                            axis=1)
     indicators = indicators.loc[sd_original:]
     prices_normalized = prices_normalized.loc[sd_original:]
     daily_price_change = self.get_daily_returns(prices_normalized)
     indicators = self.discretize(indicators)
     self.ql.querysetstate(int(float(indicators.iloc[0]['state'])))
     orders = pd.DataFrame(0,
                           index=prices_normalized.index,
                           columns=['Shares'])
     buy_sell = pd.DataFrame('BUY',
                             index=prices_normalized.index,
                             columns=['Order'])
     symbol_df = pd.DataFrame(symbol,
                              index=prices_normalized.index,
                              columns=['Symbol'])
     df_trades, df_trades.columns = pd.concat(
         [symbol_df, buy_sell, orders],
         axis=1), ['Symbol', 'Order', 'Shares']
     df_trades_copy = df_trades.copy()
     i = 0
     while i < 500:
         i += 1
         total_holdings = 0
         if (i > 20) and (df_trades.equals(df_trades_copy)): break
         df_trades_copy = df_trades.copy()
         for index, row in prices_normalized.iterrows():
             a = self.ql.query(
                 int(float(indicators.loc[index]['state'])),
                 (total_holdings * daily_price_change.loc[index] *
                  (1 - self.impact)))
             if (a == 1) and (total_holdings < 1000):
                 buy_sell.loc[index]['Order'] = 'BUY'
                 if total_holdings == 0:
                     orders.loc[index]['Shares'] = 1000
                     total_holdings += 1000
                 else:
                     orders.loc[index]['Shares'] = 2000
                     total_holdings += 2000
             elif (a == 2) and (total_holdings > -1000):
                 buy_sell.loc[index]['Order'] = 'SELL'
                 if total_holdings == 0:
                     orders.loc[index]['Shares'] = -1000
                     total_holdings = total_holdings - 1000
                 else:
                     orders.loc[index]['Shares'] = -2000
                     total_holdings = total_holdings - 2000
         df_trades = pd.concat([symbol_df, buy_sell, orders], axis=1)
         df_trades.columns = ['Symbol', 'Order', 'Shares']
    def addEvidence(self, symbol = "JPM", \
        sd=dt.datetime(2008,1,1), \
        ed=dt.datetime(2009,1,1), \
        sv = 10000):

        # add your code to do learning here
        indicators = compute_indicators(symbols=['JPM'],
                                        sd=sd,
                                        ed=ed,
                                        lookback=14,
                                        gen_plot=False)
        states = self.discreticize(indicators)
        states = states.astype(int)
        print "max_state", pd.to_numeric(states, downcast='integer')
        num_states = states.max() + 1

        learner = ql.QLearner(num_states=num_states,\
            num_actions = 3, \
            alpha = 0.2, \
            gamma = 0.9, \
            rar = 0.98, \
            radr = 0.999, \
            dyna = 0, \
            verbose=False)

        action = learner.querysetstate(
            states[0])  #set state and get first action

        # set initial state on first day
        print action

        # Calculate daily returns
        prices = ut.get_data([symbol], pd.date_range(sd, ed))
        daily_returns = ((prices / prices.shift(1)) - 1) * 100
        # print daily_returns[symbol]
        # print state
        for index, state in states[1:].iteritems():
            reward = daily_returns.loc[index, symbol]
            action = learner.query(state, reward)
            print reward, action

        # example usage of the old backward compatible util function
        syms = [symbol]
        dates = pd.date_range(sd, ed)
        prices_all = ut.get_data(syms, dates)  # automatically adds SPY
        prices = prices_all[syms]  # only portfolio symbols
        prices_SPY = prices_all['SPY']  # only SPY, for comparison later
        if self.verbose: print prices

        # example use with new colname
        volume_all = ut.get_data(syms, dates,
                                 colname="Volume")  # automatically adds SPY
        volume = volume_all[syms]  # only portfolio symbols
        volume_SPY = volume_all['SPY']  # only SPY, for comparison later
        if self.verbose: print volume
def get_indicator_data(data, symbol, window, train=True):
    indicators = compute_indicators(data, symbol, window=window)
    indicators.fillna(0, inplace=True)
    indicator_data = indicators.copy()
    if train:
        indicator_data = indicator_data[:-3]
    indicator_data.drop('Upper_BB', axis=1, inplace=True)
    indicator_data.drop('Down_BB', axis=1, inplace=True)
    #indicator_data.drop('Volatility', axis=1, inplace=True)
    #indicator_data.drop('Momentum', axis=1, inplace=True)
    #indicator_data.drop('BB_val', axis=1, inplace=True)
    #indicator_data.drop('MACD', axis=1, inplace=True)
    indicator_data = indicator_data.values
    return indicator_data
Exemple #5
0
 def testPolicy(self, symbol = "IBM", \
     sd=dt.datetime(2009,1,1), \
     ed=dt.datetime(2010,1,1), \
     sv = 10000):
     rolling_days = 30
     sd_original = sd
     sd = sd - dt.timedelta(2 * rolling_days)
     prices_normalized, prices_sma_ratio, momentum, bb_percent, volume = ind.compute_indicators(
         sd, ed, syms=[symbol], rolling_days=rolling_days)
     indicators = pd.concat([prices_sma_ratio, momentum, bb_percent['BBP']],
                            axis=1)
     indicators = indicators.loc[sd_original:]
     prices_normalized = prices_normalized.loc[sd_original:]
     indicators = self.discretize(indicators)
     orders = pd.DataFrame(0,
                           index=prices_normalized.index,
                           columns=['Shares'])
     buy_sell = pd.DataFrame('BUY',
                             index=prices_normalized.index,
                             columns=['Order'])
     symbol_df = pd.DataFrame(symbol,
                              index=prices_normalized.index,
                              columns=['Symbol'])
     total_holdings = 0
     self.ql.querysetstate(int(float(indicators.iloc[0]['state'])))
     for index, row in prices_normalized.iterrows():
         a = self.ql.querysetstate(
             int(float(indicators.loc[index]['state'])))
         if (a == 1) and (total_holdings < 1000):
             buy_sell.loc[index]['Order'] = 'BUY'
             if total_holdings == 0:
                 orders.loc[index]['Shares'] = 1000
                 total_holdings += 1000
             else:
                 orders.loc[index]['Shares'] = 2000
                 total_holdings += 2000
         elif (a == 2) and (total_holdings > -1000):
             buy_sell.loc[index]['Order'] = 'SELL'
             if total_holdings == 0:
                 orders.loc[index]['Shares'] = -1000
                 total_holdings = total_holdings - 1000
             else:
                 orders.loc[index]['Shares'] = -2000
                 total_holdings = total_holdings - 2000
     df_trades, df_trades.columns = pd.concat(
         [symbol_df, buy_sell, orders],
         axis=1), ['Symbol', 'Order', 'Shares']
     df_trades = df_trades.drop('Symbol', axis=1).drop('Order', axis=1)
     return df_trades
def TA_screener(lookback_range):
    TA_results_global = {}
    count = 0
    col_name = ['symbol']
    wishlist_df = pd.read_csv('wishlist.csv', names=col_name)
    wishlist = wishlist_df.symbol.tolist()
    for element in wishlist:
        print(element)
        TA_results = {}
        df = pd.read_csv("stock_data/" + element + "_" + str(start_date) +
                         "_" + str(end_date) + ".csv")
        # print(df)
        open = df['Open']
        high = df['High']
        low = df['Low']
        close = df['Close']
        volume = df['Volume']
        date = df['Date']
        count = count + 1
        trends_dict = find_trends(df)
        recognised_patterns = pattern_recogniser(open, high, low, close,
                                                 volume, date)
        # print(recognised_patterns)
        volumes = volume_screener(volume, date)
        SandR_levels = SandR_calc(df)

        sup_res_dict = sup_res_calculator(close, date)
        indicators = compute_indicators(open, high, low, close, volume, date)

        TA_results = globalDictForSingleStock(recognised_patterns, volumes,
                                              sup_res_dict, SandR_levels,
                                              indicators, trends_dict,
                                              lookback_range)
        # print(TA_results)
        df = df.set_index("Date")
        trades = checklist(TA_results, df, lookback_range)
        TA_results_global[element] = trades

        # if count == 10:
        #     break
        # break

    # TA_results_sorted = dict(sorted(TA_results_global.items(), key=lambda item : item['Score'][1]))
    # TA_results_global = TA_results_sorted
    TA_results_global = sort_trades_dict(TA_results_global)
    # print(TA_results_global)
    writeJsonFile("TA_screener_output.json", TA_results_global)
    return TA_results_global
Exemple #7
0
def get_indicator_data(data, symbol, window, train=True):
    # Compute indicators, which are features
    indicators = compute_indicators(data, symbol, window=window)
    indicators.fillna(0, inplace=True)
    indicator_data = indicators.copy()
    if train:
        indicator_data = indicator_data[:-3]

    # Uncomment below to try different set of features
    indicator_data.drop('Upper_BB', axis=1, inplace=True)
    indicator_data.drop('Down_BB', axis=1, inplace=True)
    #indicator_data.drop('Volatility', axis=1, inplace=True)
    #indicator_data.drop('Momentum', axis=1, inplace=True)
    #indicator_data.drop('BB_val', axis=1, inplace=True)
    #indicator_data.drop('MACD', axis=1, inplace=True)
    indicator_data = indicator_data.values  # to numpy array
    return indicator_data
Exemple #8
0
def testPolicy(symbol="AAPL",
               sd=dt.datetime(2010, 1, 1),
               ed=dt.datetime(2011, 12, 31),
               sv=100000):
    symbols = [symbol]
    prices, sma, sma_over, bb_std, top_band, bottom_band, bb, momentum = ind.compute_indicators(
        start_date=sd, end_date=ed, symbols=symbols, lookback=14)
    prices = prices.ix[:, ['JPM']]
    sma = sma.ix[:, ['JPM']]
    sma_over = sma_over.ix[:, ['JPM']]
    bb_std = bb_std.ix[:, ['JPM']]
    top_band = top_band.ix[:, ['JPM']]
    bottom_band = bottom_band.ix[:, ['JPM']]
    bb = bb.ix[:, ['JPM']]
    momentum = momentum.ix[:, ['JPM']]

    orders = prices.copy()
    orders.ix[:, :] = np.NaN

    sma_cross = pd.DataFrame(0, index=sma_over.index, columns=sma_over.columns)
    sma_cross[sma_over >= 1] = 1
    sma_cross[1:] = sma_cross.diff()
    sma_cross.ix[0] = 0

    orders[(sma_over < 0.85)] = 1
    orders[(sma_over > 1.25)] = -1
    orders[(bb < -0.4)] = 1
    orders[(bb > 1.4)] = -1
    orders[(momentum < -0.03)] = 1
    orders[(momentum > 0.08)] = -1

    orders[(sma_cross != 0)] = 0

    orders.ffill(inplace=True)
    orders.fillna(0, inplace=True)

    orders[1:] = orders.diff()
    orders.ix[0] = 0

    order_list = pd.DataFrame(data='JPM',
                              index=orders.index,
                              columns=['Symbol', 'Order', 'Shares'])
    holds = 0

    length = len(prices.index)
    for i in range(0, length - 1):
        if (orders.ix[i, 'JPM'] > 0) and (holds == 0):
            order_list.ix[i, "Order"] = 'BUY'
            order_list.ix[i, "Shares"] = 1000
            holds = holds + order_list.ix[i, "Shares"]
        elif (orders.ix[i, 'JPM'] > 0) and (holds == 1000):
            order_list.ix[i, "Order"] = 'HOLD'
            order_list.ix[i, "Shares"] = 0
            holds = holds + order_list.ix[i, "Shares"]
        elif (orders.ix[i, 'JPM'] > 0) and (holds == -1000):
            order_list.ix[i, "Order"] = 'BUY'
            order_list.ix[i, "Shares"] = 2000
            holds = holds + order_list.ix[i, "Shares"]
        elif (orders.ix[i, 'JPM'] < 0) and (holds == 0):
            order_list.ix[i, "Order"] = 'SELL'
            order_list.ix[i, "Shares"] = 1000
            holds = holds - order_list.ix[i, "Shares"]
        elif (orders.ix[i, 'JPM'] < 0) and (holds == 1000):
            order_list.ix[i, "Order"] = 'SELL'
            order_list.ix[i, "Shares"] = 2000
            holds = holds - order_list.ix[i, "Shares"]
        elif (orders.ix[i, 'JPM'] < 0) and (holds == -1000):
            order_list.ix[i, "Order"] = 'HOLD'
            order_list.ix[i, "Shares"] = 0
            holds = holds - order_list.ix[i, "Shares"]
        else:
            order_list.ix[i, "Order"] = 'HOLD'

    order_list = order_list[order_list.Order != 'HOLD']
    order_list = order_list[order_list.Order != 'JPM']
    return order_list
    def addEvidence(self, symbol = "IBM", \
        sd=dt.datetime(2008,1,1), \
        ed=dt.datetime(2009,1,1), \
        sv = 10000):

        N = 30
        K = 2 * N
        sd_original = sd

        # add your code to do learning here
        sd = sd - dt.timedelta(K)

        # example usage of the old backward compatible util function
        syms = [symbol]
        dates = pd.date_range(sd, ed)
        prices_all = ut.get_data(syms, dates)  # automatically adds SPY
        prices = prices_all[syms]  # only portfolio symbols
        prices_SPY = prices_all['SPY']  # only SPY, for comparison later

        prices_normalized, prices_sma_ratio, momentum, bb_percent = ind.compute_indicators(
            sd, ed, syms=[symbol], rolling_days=N)

        indicators = pd.concat([prices_sma_ratio, momentum, bb_percent['BBP']],
                               axis=1)
        indicators = indicators.loc[sd_original:]
        prices_normalized = prices_normalized.loc[sd_original:]

        daily_price_change = self.get_daily_returns(prices_normalized)

        indicators = self.discretize(indicators)

        initial_state = indicators.iloc[0]['state']

        self.ql.querysetstate(int(float(initial_state)))

        orders = pd.DataFrame(0,
                              index=prices_normalized.index,
                              columns=['Shares'])
        buy_sell = pd.DataFrame('BUY',
                                index=prices_normalized.index,
                                columns=['Order'])
        symbol_df = pd.DataFrame(symbol,
                                 index=prices_normalized.index,
                                 columns=['Symbol'])

        df_trades = pd.concat([symbol_df, buy_sell, orders], axis=1)
        df_trades.columns = ['Symbol', 'Order', 'Shares']

        df_trades_copy = df_trades.copy()

        i = 0

        while i < 500:
            i += 1
            reward = 0
            total_holdings = 0

            if (i > 20) and (df_trades.equals(df_trades_copy)):
                #print(i)
                break

            df_trades_copy = df_trades.copy()

            for index, row in prices_normalized.iterrows():
                reward = total_holdings * daily_price_change.loc[index] * (
                    1 - self.impact)
                a = self.ql.query(int(float(indicators.loc[index]['state'])),
                                  reward)
                if (a == 1) and (total_holdings < 1000):
                    buy_sell.loc[index]['Order'] = 'BUY'
                    if total_holdings == 0:
                        orders.loc[index]['Shares'] = 1000
                        total_holdings += 1000
                    else:
                        orders.loc[index]['Shares'] = 2000
                        total_holdings += 2000
                elif (a == 2) and (total_holdings > -1000):
                    buy_sell.loc[index]['Order'] = 'SELL'
                    if total_holdings == 0:
                        orders.loc[index]['Shares'] = -1000
                        total_holdings = total_holdings - 1000
                    else:
                        orders.loc[index]['Shares'] = -2000
                        total_holdings = total_holdings - 2000

            df_trades = pd.concat([symbol_df, buy_sell, orders], axis=1)
            df_trades.columns = ['Symbol', 'Order', 'Shares']