wspace=.050,
                       hspace=0.01)

    gl.savefig(folder_images + 'MAMAw.png', dpi=100, sizeInches=[2 * 8, 2 * 3])

if (HullsMA):
    # Some basic indicators.
    price = timeData.get_timeSeries(["Close"])
    dates = timeData.get_dates()

    # For comparing SMA, EMA, WMA
    nHMA = 20
    # Lag of different amplitudes.
    #

    HMA = indl.get_HMA(price, nHMA)
    WMA = indl.get_WMA(price, nHMA)
    HMAg = indl.get_HMAg(price, nHMA)

    # For lag and noise

    # Plotting the 3 of them at the same time.
    title = "Hull's MA. " + str(
        symbols[0]) + "(" + ul5.period_dic[timeData.period] + ")"

    gl.plot(dates, [price, HMA, HMAg, WMA],
            nf=1,
            AxesStyle="Normal",
            labels=[title, "", r"Price ($\$$)"],
            legend=[
                "Price",
    Target = Target  # Increase in Close price
    Range_HL = H - L  # measure of volatility
    Daily_gap = O - bMl.shift(C, lag=1).flatten()  # measure of price movement

    ## Add the lagged value to the database
    Nlag_OCHL_information = 3
    tut.add_lagged_values(data_df, Target, "Target", Nlag_OCHL_information)
    tut.add_lagged_values(data_df, Range_HL, "Range_HL", Nlag_OCHL_information)
    tut.add_lagged_values(data_df, Daily_gap, "Daily_gap",
                          Nlag_OCHL_information)

    ################## Daily Trading Indicators ####################
    # Hulls_average !! ACDC, Volatility, ATR, Short
    nHMA = 20
    ## Hulls Average, reactive but smoothing MA
    HMA = indl.get_HMA(timeData_daily.get_timeSeries(["Close"]), nHMA)

    ## Volatility
    nAHLR = 20
    nBB = 20
    nATR = 20
    nCha = 20
    AHLR = timeData_daily.AHLR(n=nAHLR)
    ATR = timeData_daily.ATR(n=nATR)
    EMA_Range, Cha = timeData_daily.Chaikin_vol(n=nCha)
    BB = timeData_daily.BBANDS(seriesNames=["Close"], n=nBB)
    BB = BB[:, 0] - BB[:, 1]

    # Oscillators
    n, SK, SD = 14, 6, 6
    L = 14
def get_HMA(self, L):
    timeSeries = self.get_timeSeries()
    HMA = indl.get_HMA(timeSeries, L)
    return HMA
def get_HMA(self, L):
    if (self.timeSeries == []):  # Check existence of timeSeries
        self.get_timeSeries()
    HMA = indl.get_HMA(self.timeSeries, L)

    return HMA
 Target = Target # Increase in Close price
 Range_HL = H-L # measure of volatility
 Daily_gap =  O - bMl.shift(C,lag = 1).flatten() # measure of price movement
 
 ## Add the lagged value to the database
 Nlag_OCHL_information = 3
 tut.add_lagged_values(data_df,Target,"Target",Nlag_OCHL_information)
 tut.add_lagged_values(data_df,Range_HL,"Range_HL",Nlag_OCHL_information)
 tut.add_lagged_values(data_df,Daily_gap,"Daily_gap",Nlag_OCHL_information)
 
 
 ################## Daily Trading Indicators ####################
 # Hulls_average !! ACDC, Volatility, ATR, Short 
 nHMA = 20
 ## Hulls Average, reactive but smoothing MA
 HMA  = indl.get_HMA(timeData_daily.get_timeSeries(["Close"]), nHMA)  
 
 ## Volatility
 nAHLR = 20; nBB = 20; nATR = 20; nCha = 20;
 AHLR = timeData_daily.AHLR(n = nAHLR)
 ATR = timeData_daily.ATR(n = nATR)
 EMA_Range, Cha = timeData_daily.Chaikin_vol(n = nCha)
 BB = timeData_daily.BBANDS(seriesNames = ["Close"], n = nBB)
 BB = BB[:,0] - BB[:,1] 
 
 # Oscillators
 n , SK, SD = 14, 6,6
 L = 14
 L1 , L2, L3 = 14, 9,12
 
 STO = timeData_daily.STO(n = n, SK = SK, SD = SD)
def get_HMA(self, L):
    timeSeries = self.get_timeSeries()
    HMA = indl.get_HMA(timeSeries, L)
    return HMA
Exemple #7
0
    gl.subplots_adjust(left=.09, bottom=.10, right=.90, top=.95, wspace=.050, hspace=0.01)

    gl.savefig(folder_images +'MAMAw.png', 
               dpi = 100, sizeInches = [2*8, 2*3])
               
if (HullsMA):
    # Some basic indicators.
    price = timeData.get_timeSeries(["Close"]);
    dates = timeData.get_dates()
    
    # For comparing SMA, EMA, WMA
    nHMA = 20
    # Lag of different amplitudes.
    # 
    
    HMA  = indl.get_HMA(price, nHMA)
    WMA  = indl.get_WMA(price, nHMA)
    HMAg  = indl.get_HMAg(price, nHMA)
    
    # For lag and noise

    # Plotting the 3 of them at the same time.
    title = "Hull's MA. " + str(symbols[0]) + "(" + ul.period_dic[timeData.period]+ ")"

    gl.plot(dates, [price, HMA, HMAg, WMA] , nf = 1 ,AxesStyle = "Normal",
            labels = [title,"",r"Price ($\$$)"],
            legend = ["Price", "HMA(%i)"%nHMA,  "HMAg(%i)"%nHMA, "WMA(%i)"%nHMA])

    gl.savefig(folder_images +'HMA.png', 
               dpi = 100, sizeInches = [2*8, 2*3])