def run_jc_sample(layers, judge_types, auction_type, valuation_type): interdep_net = indp.initialize_sample_network(layers=layers) params = { "NUM_ITERATIONS": 7, "OUTPUT_DIR": '../results/jc_sample_12Node_results', "V": len(layers), "T": 1, "L": layers, "WINDOW_LENGTH": 1, "ALGORITHM": "JC", "N": interdep_net, "MAGNITUDE": 0, "SIM_NUMBER": 0, "JUDGMENT_TYPE": judge_types, "RES_ALLOC_TYPE": auction_type, "VALUATION_TYPE": valuation_type } dindputils.run_judgment_call(params, save_jc_model=True, print_cmd=False) for jt, rst, vt in itertools.product(judge_types, auction_type, valuation_type): print('\n\nPlot restoration plan by JC', jt, rst, vt) if rst == 'UNIFORM': indp.plot_indp_sample(params, folderSuffix='_' + jt + '_' + rst, suffix="real") else: indp.plot_indp_sample(params, folderSuffix='_' + jt + '_AUCTION_' + rst + '_' + vt, suffix="real") plt.show()
def run_indp_sample(layers): interdep_net = indp.initialize_sample_network(layers=layers) params = { "NUM_ITERATIONS": 0, "OUTPUT_DIR": '../results/indp_sample_12Node_results', "V": { '': len(layers) }, "T": 1, "L": layers, "WINDOW_LENGTH": 1, "ALGORITHM": "INDP", "N": interdep_net, "MAGNITUDE": 0, "SIM_NUMBER": 0, 'DYNAMIC_PARAMS': None } indp.run_indp(params, layers=layers, T=params["T"], suffix="", save_model=True, print_cmd_line=True) print('\n\nPlot restoration plan by INDP') indp.plot_indp_sample(params) plt.show()
def run_game_sample(layers, judge_types, auction_type, valuation_type, game_type="NORMALGAME", signals=None, beliefs=None, reduced_act=None): interdep_net = indp.initialize_sample_network(layers=layers) if game_type == "NORMALGAME": out_dir = '../results/ng_sample_12Node_results' elif game_type == "BAYESGAME": out_dir = '../results/bg' + ''.join(signals.values()) + ''.join(beliefs.values()) + \ '_sample_12Node_results' params = { "NUM_ITERATIONS": 7, "OUTPUT_DIR": out_dir, "V": { '': len(layers) }, "T": 1, "L": layers, "WINDOW_LENGTH": 1, "ALGORITHM": game_type, 'EQUIBALG': 'enumerate_pure', "N": interdep_net, "MAGNITUDE": 0, "SIM_NUMBER": 0, "JUDGMENT_TYPE": judge_types, "RES_ALLOC_TYPE": auction_type, "VALUATION_TYPE": valuation_type, 'DYNAMIC_PARAMS': None, 'PAYOFF_DIR': None, "SIGNALS": signals, "BELIEFS": beliefs, 'REDUCED_ACTIONS': reduced_act } gameutils.run_game(params, save_results=True, print_cmd=True, save_model=True, plot2D=True) for jt, rst, vt in itertools.product(judge_types, auction_type, valuation_type): print('\n\nPlot restoration plan by Game', jt, rst, vt) if rst == 'UNIFORM' or 'FIXED_LAYER': indp.plot_indp_sample(params, folder_suffix='_' + jt + '_' + rst, suffix="") else: indp.plot_indp_sample(params, folder_suffix='_' + jt + '_AUCTION_' + rst + '_' + vt, suffix="") plt.show()
def run_tdindp_sample(layers): interdep_net = indp.initialize_sample_network(layers=layers) params = { "OUTPUT_DIR": '../results/tdindp_sample_12Node_results', "V": len(layers), "T": 7, "L": layers, "ALGORITHM": "INDP", "WINDOW_LENGTH": 3, "N": interdep_net, "MAGNITUDE": 0, "SIM_NUMBER": 0 } #"WINDOW_LENGTH":6, indp.run_indp(params, layers=layers, T=params["T"], suffix="", saveModel=True, print_cmd_line=True) print('\n\nPlot restoration plan by INDP') indp.plot_indp_sample(params) plt.show()