def calc_rel_properties(self): """Calculates mass, relative center of mass, and relative/local inertia, according to formulae in Appendix B of Yeadon 1990-ii. If the stadium solid is arranged anteroposteriorly, the inertia is rotated by pi/2 about the z axis. """ # There are two cases of stadium solid degeneracy to consider: # t0 = 0, and t0 = t1 = 0. The degeneracy arises when b has a # denominator of 0. The case that t1 = 0 is not an issue, then. # The way the case of t0 = 0 is handled is by switching the two stadia. # Note that thi affects how the relative center of mass is set, but # does not affect the mass or moments of inertia calculations. # The case in which t0 = t1 = 0, we set b to 1. That is because t = t0 # (1 + bz) is going to be zero anyway, since t0 = 0. D = self.density h = self.height if self.degenerate_by_t0: # Swap the stadia. r0 = self.stads[1].radius t0 = self.stads[1].thickness r1 = self.stads[0].radius t1 = self.stads[0].thickness else: r0 = self.stads[0].radius t0 = self.stads[0].thickness r1 = self.stads[1].radius t1 = self.stads[1].thickness a = (r1 - r0) / r0 if t0 == 0: # Truncated cone, since both thicknesses are zero. # b can be anything, because t = t0(1 + bz) = (0)(1 + bz) = 0. b = 1 else: b = (t1 - t0) / t0 self._mass = D * h * r0 * (4.0 * t0 * self._F1(a,b) + np.pi * r0 * self._F1(a,a)) zcom = D * (h**2.0) * (4.0 * r0 * t0 * self._F2(a,b) + np.pi * (r0**2.0) * self._F2(a,a)) / self.mass if self.degenerate_by_t0 and t0 != 0: # We swapped the stadia, and it's not a truncated cone. # Must define this intermediate because zcom above is still what # must be used for the parallel axis theorem below. adjusted_zcom = h - zcom else: adjusted_zcom = zcom self._rel_center_of_mass = np.array([[0.0],[0.0],[adjusted_zcom]]) # moments of inertia Izcom = D * h * (4.0 * r0 * (t0**3.0) * self._F4(a,b) / 3.0 + np.pi * (r0**2.0) * (t0**2.0) * self._F5(a,b) + 4.0 * (r0**3.0) * t0 * self._F4(b,a) + np.pi * (r0**4.0) * self._F4(a,a) * 0.5 ) # CAUGHT AN (minor) ERROR IN YEADON'S PAPER HERE. The Dh^3 in the # formula below is missing from the second formula for Iy^0 on page 73 # of Yeadon1990-ii. Iy = (D * h * (4.0 * r0 * (t0**3.0) * self._F4(a,b) / 3.0 + np.pi * (r0**2.0) * (t0**2.0) * self._F5(a,b) + 8.0 * (r0**3.0) * t0*self._F4(b,a) / 3.0 + np.pi * (r0**4.0) * self._F4(a,a) * 0.25) + D * (h**3.0) * (4.0 * r0 * t0 * self._F3(a,b) + np.pi * (r0**2.0) * self._F3(a,a))) Iycom = Iy - self.mass * (zcom**2.0) Ix = (D * h * (4.0 * r0 * (t0**3.0) * self._F4(a,b) / 3.0 + np.pi * (r0**4.0) * self._F4(a,a) * 0.25) + D * (h**3.0) * (4.0 * r0 * t0 * self._F3(a,b) + np.pi * (r0**2.0) * self._F3(a,a))) Ixcom = Ix - self.mass*(zcom**2.0) self._rel_inertia = np.mat([[Ixcom,0.0,0.0], [0.0,Iycom,0.0], [0.0,0.0,Izcom]]) if self.alignment == 'AP': # rearrange to anterorposterior orientation self._rel_inertia = inertia.rotate_inertia( inertia.rotate_space_123([0, 0, np.pi/2]), self.rel_inertia)
def start_ui(): print "Starting YEADON user interface." measPreload = { 'Ls5L' : 0.545, 'Lb2p' : 0.278, 'La5p' : 0.24, 'Ls4L' : 0.493, 'La5w' : 0.0975, 'Ls4w' : 0.343, 'La5L' : 0.049, 'Lb2L' : 0.2995, 'Ls4d' : 0.215, 'Lj2p' : 0.581, 'Lb5p' : 0.24, 'Lb5w' : 0.0975, 'Lk8p' : 0.245, 'Lk8w' : 0.1015, 'Lj5L' : 0.878, 'La6w' : 0.0975, 'Lk1L' : 0.062, 'La6p' : 0.2025, 'Lk1p' : 0.617, 'La6L' : 0.0805, 'Ls5p' : 0.375, 'Lj5p' : 0.2475, 'Lk8L' : 0.1535, 'Lb5L' : 0.049, 'La3p' : 0.283, 'Lj9w' : 0.0965, 'La4w' : 0.055, 'Ls6L' : 0.152, 'Lb0p' : 0.337, 'Lj8w' : 0.1015, 'Lk2p' : 0.581, 'Ls6p' : 0.53, 'Lj9L' : 0.218, 'La3L' : 0.35, 'Lj8p' : 0.245, 'Lj3L' : 0.449, 'La4p' : 0.1685, 'Lk3L' : 0.449, 'Lb3p' : 0.283, 'Ls7L' : 0.208, 'Ls7p' : 0.6, 'Lb3L' : 0.35, 'Lk3p' : 0.3915, 'La4L' : 0.564, 'Lj8L' : 0.1535, 'Lj3p' : 0.3915, 'Lk4L' : 0.559, 'La1p' : 0.2915, 'Lb6p' : 0.2025, 'Lj6L' : 0.05, 'Lb6w' : 0.0975, 'Lj6p' : 0.345, 'Lb6L' : 0.0805, 'Ls0p' : 0.97, 'Ls0w' : 0.347, 'Lj6d' : 0.122, 'Ls8L' : 0.308, 'Lk5L' : 0.878, 'La2p' : 0.278, 'Lj9p' : 0.215, 'Ls1L' : 0.176, 'Lj1L' : 0.062, 'Lb1p' : 0.2915, 'Lj1p' : 0.617, 'Ls1p' : 0.865, 'Ls1w' : 0.317, 'Lk4p' : 0.34, 'Lk5p' : 0.2475, 'La2L' : 0.2995, 'Lb4w' : 0.055, 'Lb4p' : 0.1685, 'Lk9p' : 0.215, 'Lk9w' : 0.0965, 'Ls2p' : 0.845, 'Lj4L' : 0.559, 'Ls2w' : 0.285, 'Lk6L' : 0.05, 'La7w' : 0.047, 'La7p' : 0.1205, 'La7L' : 0.1545, 'Lk6p' : 0.345, 'Ls2L' : 0.277, 'Lj4p' : 0.34, 'Lk6d' : 0.122, 'Lk9L' : 0.218, 'Lb4L' : 0.564, 'La0p' : 0.337, 'Ls3w' : 0.296, 'Ls3p' : 0.905, 'Lb7p' : 0.1205, 'Lb7w' : 0.047, 'Lj7p' : 0.252, 'Lb7L' : 0.1545, 'Ls3L' : 0.388, 'Lk7p' : 0.252 } # initialize the joint angle data # user supplies names/paths of input text files print "PROVIDE DATA INPUTS: measurements and configuration (joint angles)." print "\nMEASUREMENTS: can be provided as a 95-field dict (units must be " \ "meters), or a .TXT file" temp = raw_input("Type the name of the .TXT filename (to use preloaded " "measurements just hit enter): ") if temp == '': meas = measPreload else: file_exist_meas = os.path.exists(temp) meas = temp while not file_exist_meas: temp = raw_input("Please type the correct name of the .TXT filename " "(or just use preloaded measurements just hit enter): ") file_exist_meas = os.path.exists(temp) if temp == '': meas = measPreload break elif file_exist_meas: meas = temp print "\nCONFIGURATION (joint angles): can be provided as a 21-field dict,"\ " or a .TXT file" CFG = raw_input("Type the name of the .TXT filename (for all joint angles " "as zero, just hit enter): ") # create the human object. only one is needed for this commandline program print "Creating human object." if CFG == '': H = hum.Human(meas) else: file_exist_CFG = os.path.exists(CFG) while not file_exist_CFG: CFG = raw_input("Please type the correct name of the .TXT filename " "(for all joint angles as zero, just hit enter): ") file_exist_CFG = os.path.exists(CFG) if CFG == '': H = hum.Human(meas) break elif file_exist_CFG: H = hum.Human(meas, CFG) done = 0 # loop end flag while done != 1: print "\nYEADON MAIN MENU" print "----------------" print " j: print/modify joint angles\n\n",\ " a: save current joint angles to file\n",\ " p: load joint angles from file\n",\ " s: format input measurements for ISEG Fortran code\n\n",\ " t: transform absolute/base/fixed coordinate system\n\n",\ " d: draw 3D human\n\n",\ " h: print human properties\n",\ " g: print segment properties\n",\ " l: print solid properties\n\n",\ " c: combine solids/segments for inertia parameters\n\n",\ " o: options\n",\ " q: quit" userIn = raw_input("What would you like to do next? ") print "" # MODIFY JOINT ANGLES if userIn == 'j': # this function is defined above H = modify_joint_angles(H) # SAVE CURRENT JOINT ANGLES elif userIn == 'a': fname = raw_input("The joint angle dictionary CFG will be pickled" \ " into a file saved in the current directory." \ " Specify a file name (without quotes or spaces," \ " q to quit): ") if fname != 'q': H.write_CFG(fname) print "The joint angles have been saved in",fname,".pickle." # LOAD JOINT ANGLES elif userIn == 'p': print "Be careful with this, because there is no error checking"\ " yet. Make sure that the pickle file is in the same format"\ " as a pickle output file from this program." fname = raw_input("Enter the name of a CFG .TXT file" \ " including its extension" \ " (q to quit):") if fname != 'q': H.read_CFG(fname) print "The joint angles in",fname,".pickle have been loaded." # FORMAT INPUT MEASUREMENTS FOR ISEG FORTRAN CODE elif userIn == 's': fname = raw_input("Enter the file name to which you would like" \ " to write the ISEG input: ") if H.write_meas_for_ISEG(fname) == 0: print "Success!" else: print "Uh oh, there was an error when trying to write",\ "the ISEG input." # TRANSFORM COORDINATE SYSTEM elif userIn == 't': print "Transforming absolute/base/fixed coordinate system." print "First we will rotate the yeadon coordinate system " \ "with respect to your new, desired coordinate system. " \ "We will first rotate about your x-axis, then your " \ "y-axis, then your z-axis." thetx = raw_input("Angle (rad) about your x-axis: ") thety = raw_input("Angle (rad) about your y-axis: ") thetz = raw_input("Angle (rad) about your z-axis: ") H.rotate_coord_sys(inertia.rotate_space_123(thetx,thety,thetz)) print "Now we'll specify the position of yeadon with respect to " \ "your coordinate system. You will provide the three " \ "components, x y and z, in YOUR coordinates." posx = raw_input("X-position (m): ") posy = raw_input("Y-position (m): ") posz = raw_input("Z-position (m): ") H.translate_coord_sys( (posx,posy,posz) ) print "All done!" # DRAW HUMAN WITH MAYAVI elif userIn == 'd': H.draw() # PRINT HUMAN PROPERTIES elif userIn == 'h': print "\nHuman properties." H.print_properties() # PRINT SEGMENT PROPERTIES elif userIn == 'g': print_segment_properties(H) # PRINT SOLID PROPERTIES elif userIn == 'l': print_solid_properties(H) # COMBINE INERTIA PARAMETERS elif userIn == 'c': print "Use the following variables/keywords to select which" \ " solids/segments to combine: " print " s0 - s7, a0 - a6, b0 - b6, j0 - j8, k0 - k8" print " P, T, C, A1, A2, B1, B2, J1, J2, K1, K2\n" print "Enter in the keywords one at a time. When you are " \ "done, enter q." combinedone = False combinectr = 1 objlist = [] while combinedone == False: objtemp = raw_input('Solid/segment #' + str(combinectr) + ': ') if objtemp == 'q': combinedone = True else: objlist.append(objtemp) combinectr += 1 print "Okay, get ready for your results (mass, COM, Inertia)!" combineMass,combineCOM,combineInertia = H.combine_inertia(objlist) print "These values are with respect to your fixed frame." print "Mass (kg):", combineMass print "COM (m):\n", combineCOM print "Inertia (kg-m^2):\n", combineInertia # OPTIONS elif userIn == 'o': optionsdone = 0 sym = ('off','on') while optionsdone != 1: print "\nOPTIONS" print "-------" print " 1: toggle symmetry (symmetry is",\ sym[ int(H.is_symmetric) ],"now)\n", \ " 2: scale human by mass\n", \ " q: back to main menu" optionIn = raw_input("What would you like to do? ") if optionIn == '1': if H.is_symmetric == True: H.is_symmetric = False H.meas = meas elif H.is_symmetric == False: H.is_symmetric = True H._average_limbs() H.update() print "Symmetry is now turned", sym[int(H.is_symmetric)], "." elif optionIn == '2': measmass = raw_input("Provide a measured mass with which "\ "to scale the human (kg): ") H.scale_human_by_mass(float(measmass)) elif optionIn == 'q': print "Going back to main menu." optionsdone = 1 else: print "Invalid input." elif userIn == 'q': print "Quitting YEADON" done = 1 else: print "Invalid input."